
Overview

Rapid growth of massive datasets
E.g., Online activity, Science, Sensor networks

Data

Distributed
Computing

Data

Distributed Clusters are Pervasive

Distributed
Computing

Data Machine
Learning

Mature Methods for Common Problems  
e.g., classification, regression, collaborative filtering, clustering

Distributed
Computing

Data Machine
Learning

ML is Applied Everywhere
E.g., personalized recommendations, speech recognition, face detection, protein

structure, fraud detection, spam filtering, playing chess or Jeopardy, unassisted vehicle
control, medical diagnosis

Distributed
Computing

Data Machine
Learning

ML is Applied Everywhere
E.g., personalized recommendations, speech recognition, face detection, protein

structure, fraud detection, spam filtering, playing chess or Jeopardy, unassisted vehicle
control, medical diagnosis

Classic ML techniques are not always suitable for modern datasets

0"

10"

20"

30"

40"

50"

60"

2010" 2011" 2012" 2013" 2014" 2015"

Moore's"Law"
Overall"Data"
Par8cle"Accel."
DNA"Sequencers"

Data"Grows"faster"than"Moore’s"Law"
[IDC%report,%Kathy%Yelick,%LBNL]%

Challenge: Scalability

Machine
Learning

Data

Distributed
Computing

Data Grows Faster
than Moore’s Law
[IDC report, Kathy Yelick, LBNL]

Focus on scalability challenges for common ML tasks

How can we use raw data to train statistical models?
• Study typical ML pipelines
• Classification, regression, exploratory analysis

How can we do so at scale?
• Study distributed machine learning algorithms
• Implement distributed pipelines in Apache Spark

using real datasets
• Understand details of MLlib (Spark’s ML library)

Course Goals

Machine
Learning

Data

Distributed
Computing

BerkeleyX CS105x - Introduction to Apache Spark
• Fundamentals of Spark 

Basic Python, ML, math background
• First week provides review of ML and useful math concepts 

Self-assessment exam has pointers to review material
• http://cs.ucla.edu/~ameet/self_assessment.pdf

Prerequisites

4 weeks of lectures, 4 Spark coding labs
• Week 1: ML Overview, Math Review, Spark RDD Overview
• Week 2: Distributed ML Principles and Linear Regression
• Week 3: Classification with Click-through Rate Prediction
• Week 4: Exploratory Analysis with Brain Imaging Data

Schedule

Distributed Computing
and Apache Spark

How to Handle Massive Data?
Traditional tools (Matlab, R, Excel, etc.) run on a single machine

Need more hardware to store / process modern data

How to Handle Massive Data?

Need more hardware to store / process modern data
Scale-up (one big machine)
• Can be very fast for medium scale problems
• Expensive, specialized hardware
• Eventually hit a wall

How to Handle Massive Data?

CPU

Disk

RAM

CPU
Disk

RAM

How to Handle Massive Data?
Need more hardware to store / process modern data
Scale-out (distributed, e.g., cloud-based)
• Commodity hardware, scales to massive problems
• Need to deal with network communication
• Added software complexity

Network

CPU

Disk

RAM …

CPU

Disk

RAM

CPU

Disk

RAM

CPU

Disk

RAM

General, open-source cluster computing engine

Well-suited for machine learning
• Fast iterative procedures
• Efficient communication primitives

Simple and Expressive
• APIs in Scala, Java, Python, R
• Interactive Shell  

Integrated Higher-Level Libraries

What is Apache ?

Spark 
SQL

Apache Spark

Spark
Streaming MLlib GraphX

What is Machine
Learning?

Constructing and studying methods that learn from and make
predictions on data 

Broad area involving tools and ideas from various domains
• Computer Science
• Probability and Statistics
• Optimization
• Linear Algebra

A Definition

Some Examples
Face recognition

Link prediction

Text or document classification, e.g., spam detection

Protein structure prediction

Games, e.g., Backgammon or Jeopardy

Observations. Items or entities used for learning or evaluation, e.g., emails

Features. Attributes (typically numeric) used to represent an observation,
e.g., length, date, presence of keywords

Labels. Values / categories assigned to observations, e.g., spam, not-spam

Training and Test Data. Observations used to train and evaluate a learning
algorithm, e.g., a set of emails along with their labels
• Training data is given to the algorithm for training
• Test data is withheld at train time

Terminology

Two Common Learning Settings

Supervised learning. Learning from labeled observations
• Labels ‘teach’ algorithm to learn mapping from observations to labels
 
 
Unsupervised learning. Learning from unlabeled observations
• Learning algorithm must find latent structure from features alone
• Can be goal in itself (discover hidden patterns, exploratory data analysis)
• Can be means to an end (preprocessing for supervised task)

Examples of Supervised Learning

Classification. Assign a category to each item, e.g., spam detection
• Categories are discrete
• Generally no notion of ‘closeness’ in multi-class setting  
 

Regression. Predict a real value for each item, e.g., stock prices
• Labels are continuous
• Can define ‘closeness’ when comparing prediction with label

Examples of Unsupervised Learning

Clustering. Partition observations into homogeneous regions, e.g., to
identify “communities” within large groups of people in social networks

Dimensionality Reduction. Transform an initial feature representation
into a more concise representation, e.g., representing digital images

Typical Supervised
Learning Pipeline

Raw data comes from many sourcesObtain Raw Data

Data Types

Web hypertext

Data Types

Email

Data Types

Genomic Data, e.g., SNPs

Data Types

Images

Data Types

(Social) Networks / Graphs

User Ratings

Data Types

Initial observations can be in arbitrary format
We extract features to represent observations
We can incorporate domain knowledge
We typically want numeric features
Success of entire pipeline often depends on
choosing good descriptions of observations!!

Obtain Raw Data

Feature Extraction

Train a supervised model using labeled data,
e.g., Classification or Regression model

Obtain Raw Data

Feature Extraction

Supervised Learning

Q: How do we determine the quality of the
model we’ve just trained?
A: We can evaluate it on test / hold-out data,
i.e., labeled data not used for training
If we don’t like the results, we iterate…

Obtain Raw Data

Feature Extraction

Supervised Learning

Evaluation

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning
Once we’re happy with our model, we can
use it to make predictions on future
observations, i.e., data without a known label

Sample Classification
Pipeline

Classification

Goal: Learn a mapping from observations to discrete labels
given a set of training examples (supervised learning)

Example: Spam Classification
• Observations are emails
• Labels are {spam, not-spam} (Binary Classification)
• Given a set of labeled emails, we want to predict whether

a new email is spam or not-spam

Other Examples

Fraud detection: User activity → {fraud, not fraud}

Face detection: Images → set of people

Link prediction: Users → {suggest link, don’t suggest link}

Clickthrough rate prediction: User and ads → {click, no click}

Many others…

training
set

Classification Pipeline

Raw data consists of a set of labeled
training observations

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

E.g., Spam Classification
Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by
giving us your money..."

From: bob@good.com

"Hi, it's been a while!
How are you? ..."

spam

not-spam

Observation

spam

not-spam

Label

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

training
set

Classification Pipeline

Feature extraction typically transforms each
observations into a vector of real numbers (features)

Success or failure of a classifier often depends on
choosing good descriptions of observations!!

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

E.g., “Bag of Words”

Observations are documents

Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by
giving us your money..."

From: bob@good.com

"Hi, it's been a while!
How are you? ..."

Vocabulary
been
debt

eliminate
giving
how
it's
money
while

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

E.g., “Bag of Words”

Observations are documents

Build Vocabulary

Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by
giving us your money..."

From: bob@good.com

"Hi, it's been a while!
How are you? ..."

Vocabulary
been
debt

eliminate
giving
how
it's
money
while

Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by
giving us your money..."

From: bob@good.com

"Hi, it's been a while!
How are you? ..."

Vocabulary
been
debt

eliminate
giving
how
it's
money
while

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

E.g., “Bag of Words”

Observations are documents
Build Vocabulary
Derive feature vectors from Vocabulary

Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by
giving us your money..."

From: bob@good.com

"Hi, it's been a while!
How are you? ..."

Vocabulary
been
debt

eliminate
giving
how
it's
money
while

Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by
giving us your money..."

From: bob@good.com

"Hi, it's been a while!
How are you? ..."

Vocabulary
been
debt

eliminate
giving
how
it's
money
while

Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by
giving us your money..."

been

debt

eliminate

giving

how

it's

money

while

0

1

1

1

0

0

1

0

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

training
set classifier

Classification Pipeline

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

training
set classifier

Classification Pipeline

Supervised Learning: Train classifier using training data
• Common classifiers include Logistic Regression, SVMs, Decision

Trees, Random Forests, etc.  

Training (especially at scale) often involves iterative
computations, e.g., gradient descent

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

E.g., Logistic Regression

Goal: Find linear decision boundary
• Parameters to learn are feature weights and offset
• Nice probabilistic interpretation
• Covered in more detail later in course

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

How can we evaluate the quality of our classifier?
We want good predictions on unobserved data
• ’Generalization’ ability
Accuracy on training data is overly optimistic since
classifier has already learned from it
• We might be ‘overfitting’

Classification Pipeline

training
set classifier

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Fitting training data does not guarantee generalization, e.g., lookup table
Left: perfectly fits training samples, but it is complex / overfitting
Right: misclassifies a few points, but simple / generalizes
Occam’s razor

Overfitting and Generalization

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

How can we evaluate the quality of our classifier?
Idea: Create test set to simulate unobserved data

Classification Pipeline

training
set classifier

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Evaluation: Split dataset into training / testing datasets
• Train on training set (don’t expose test set to classifier)
• Make predictions on test set (ignoring test labels)
• Compare test predictions with underlying test labels

Classification Pipeline

training
set classifier

full
dataset

test set accuracy

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Classification Pipeline

training
set classifier

full
dataset

test set accuracy

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Evaluation: Split dataset into training / testing datasets
• Various ways to compare predicted and true labels
• Evaluation criterion is called a ‘loss’ function
• Accuracy (or 0-1 loss) is common for classification

new entity

prediction

Classification Pipeline

Predict: Final classifier can then be used to
make predictions on future observations, e.g.,
new emails we receive

training
set classifier

full
dataset

test set accuracy

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Linear Algebra Review

Matrices
�

���

3.3 5.3 4.5
1.0 4.5 3.4
6.3 1.0 2.2
3.6 4.7 8.9

�

���A matrix is a 2-dimensional array

Matrices

Notation:
• Matrices are denoted by bold uppercase letters
• Aij denotes the entry in ith row and jth column
• If A is n × m, it has n rows an m columns
• If A is n × m, then A

�

���

3.3 5.3 4.5
1.0 4.5 3.4
6.3 1.0 2.2
3.6 4.7 8.9

�

���

A11

A32

� Rn�m

A =A matrix is a 2-dimensional array
4 × 3

Vectors

Notation:
• Vectors are denoted by bold lowercase letters
• ai denotes the ith entry
• If a is m dimensional, then a

�

���

3.3
1.0
6.3
3.6

�

���

a2

a =A vector is a matrix with
many rows and one column

� Rm

Transpose
Swap the rows and columns of a matrix
 
 
 
 
 
 
 
 
Properties of matrix transposes:
• Aij = (A⊤)ji

• If A is n × m, then A⊤ is m × n

 3 × 2 2 × 3

�

�
3
4
1

�

� =�
�
3 4 1

�
�

�
1 4
6 1
3 5

�

� =�
�
1 6 3
4 1 5

�

 3 × 1 1 × 3

A12

(A⊤)21

Addition and Subtraction
These are element-wise operations

�
3 5
6 1

�
+

�
4 5
8 12

�
=

�
3+ 4 5+ 5
6+ 8 1+ 12

�

=

�
7 10
14 13

�
Addition:

Subtraction:
�
5
1

�
�

�
4
3

�
=

�
5� 4
1� 3

�

=

�
1

�2

�

Addition and Subtraction
The matrices must have the same dimensions

�
3 5 4
6 1 2

�
+

�
4 5 1
8 12 9

�
=

�
7 10 5
14 13 11

�

�
3 5 4
6 1 2

�
+

�
4 5
8 12

�
=

�
5
1

�
�

�
4
3

�
=

�
1

�2

�

Matrix Scalar Multiplication
We multiply each matrix element by the scalar value

3�
�
3 5 4
6 1 2

�
=

�
9 15 12
18 3 6

�

�0.5�
�
3
8

�
=

�
�1.5
�4

�

Scalar Product

A function that maps two vectors to a scalar

 
Performs pairwise multiplication of vector elements

1� 4+ 4� 2+ 3� (�7) = �9

�

�
1
4
3

�

� ·

�

�
4
2

�7

�

� = �9

Scalar Product
A function that maps two vectors to a scalar

 
Performs pairwise multiplication of vector elements

1� 4+ 4� 2+ 3� (�7) = �9

�

�
1
4
3

�

� ·

�

�
4
2

�7

�

� = �9

Scalar Product
A function that maps two vectors to a scalar

 
Performs pairwise multiplication of vector elements

The two vectors must be the same dimension

Also known as dot product or inner product

1� 4+ 4� 2+ 3� (�7) = �9

�

�
1
4
3

�

� ·

�

�
4
2

�7

�

� = �9

Matrix-Vector Multiplication
Involves repeated scalar products

�
1 4 3
6 1 2

� �

�
4
2

�7

�

� =

�
�9
12

�

1� 4+ 4� 2+ 3� (�7) = �9

Matrix-Vector Multiplication
Involves repeated scalar products

�
1 4 3
6 1 2

� �

�
4
2

�7

�

� =

�
�9
12

�

1� 4+ 4� 2+ 3� (�7) = �9

6� 4+ 1� 2+ 2� (�7) = 12

Matrix-Vector Multiplication

� � �

�

�

� =

� �
A w y

 m × 1

ith row

yi equals scalar
product between ith

row of A and w

We repeat for each
row of A, so if A has
n rows, so does y

Matrix-Vector Multiplication

� � �

�

�

� =

� �
A w y

 n × m m × 1 n × 1

ith row

yi equals scalar
product between ith

row of A and w

To perform inner products, # columns
in A must equal # rows of w

We repeat for each
row of A, so if A has
n rows, so does y

Scalar Product Revisited

Vectors assumed to be in column form (many rows, one column)

Transposed vectors are row vectors

Common notation for scalar product: x⊤w

� � �

�

�

� =

� �
x⊤ w y

�

�
� �
� �

=
�
�

scalar product

 1 × m m × 1 scalar (1 × 1)

Special case of Matrix-
Vector Multiplication

Matrix-Matrix Multiplication
Also involves several scalar products

�
9 3 5
4 1 2

� �

�
1 2
3 �5
2 3

�

� =

�
28 18
11 9

�

9� 1+ 3� 3+ 5� 2 = 28

Matrix-Matrix Multiplication
Also involves several scalar products

�
9 3 5
4 1 2

� �

�
1 2
3 �5
2 3

�

� =

�
28 18
11 9

�

9� 1+ 3� 3+ 5� 2 = 28

9� 2+ 3� (�5) + 5� 3 = 18

Matrix-Matrix Multiplication

A B C

 m × p n × m n × p

� � �

�

�

� =

� �

To perform inner products,
columns in A must equal

rows of B

Cij is scalar product
of ith row of A and
jth column of B

We repeat for each
row of A, so if A has

n rows, so does C

ith row

jth col

We repeat for each

column of B, so if B has p
columns, so does C

Matrix-Matrix Multiplication
A B C

 m × p n × m n × p

� � �

�

�

� =

� �

Associative, i.e., (AB)C = A(BC)

Not commutative, i.e., AB ≠ BA

Outer Product

Cij is “inner product” of ith entry of x and jth entry of w

� � �

�

�

� =

� �
x w⊤ C

�

�
� �
� �

=
�
�

 n × 1 1 × m n × m

� � �

�

�

� =

� �
Special case of Matrix-Matrix

Multiplication involving two vectors

� � �

�

�

� =

� �

Identity Matrix

One is the scalar multiplication identity, i.e., c × 1 = c

In is the n × n identity matrix, i.e., InA = A and AIm = A for any
n × m matrix A
 
 
 
 
 
Identity matrices are square, with ones on the diagonal entries

�
9 3 5
4 1 2

� �

�
1 0 0
0 1 0
0 0 1

�

� =

�
9 3 5
4 1 2

�

Inverse Matrix

1/c is the scalar inverse, i.e., c × 1/c = 1  

Multiplying a matrix by its inverse results in the identity matrix

• For an n × n matrix A, A-1 denotes its inverse (when it exists)

• AA-1 = A-1A = In

 
Only a square matrix (when n = m) can have an inverse

The magnitude / length of a scalar is its absolute value

Vector norms generalize this idea for vectors

The Euclidean norm for is denoted by

• sd

• Equals absolute value when m=1

• Related to scalar product:

Euclidean Norm for Vectors

�x�22 = x�x

�x�2

�x�2 =
�
x21 + x22 + . . . + x2m

x � Rm

Big O Notation for Time
and Space Complexity

Big O Notation
Describes how algorithms respond to changes in input size
• Both in terms of processing time and space requirements
• We refer to complexity and Big O notation synonymously

Required space proportional to units of storage
• Typically 8 bytes to store a floating point number

Required time proportional to number of ‘basic operations’
• Arithmetic operations (+, −, ×, /), logical tests (<, >, ==)

Big O Notation
Notation:
• Can describe an algorithm’s time or space complexity

Informal definition: does not grow faster than

Formal definition:

Ignores constants and lower-order terms
• For large enough , these terms won’t matter
• E.g.,

f(x) = O(g(x)) �� |f(x)| � C|g(x)| �x > N

f(x) = O(g(x)) �� |f(x)| � C|g(x)| � x > N

x2 + 3x � Cx2 � x > N

f g

x2 + 3x � Cx2 � x > N

E.g., O(1) Complexity

Constant time algorithms perform the same number of
operations every time they’re called
• E.g., performing a fixed number of arithmetic operations  

Similarly, constant space algorithms require a fixed amount of
storage every time they’re called
• E.g., storing the results of a fixed number of arithmetic

operations

E.g., O(n) Complexity
Linear time algorithms perform a number of operations
proportional to the number of inputs
• E.g., adding two n-dimensional vectors requires O(n)

arithmetic operations 

Similarly, linear space algorithms require storage proportional
to the size of the inputs
• E.g., adding two n-dimensional vectors results in a new n-

dimensional vector which requires O(n) storage

E.g., O(n2) Complexity
Quadratic time algorithms perform a number of operations
proportional to the square of the number of inputs
• E.g., outer product of two n-dimensional vectors requires

O(n2) multiplication operations (one per each entry of the
resulting matrix) 

Similarly, quadratic space algorithms require storage
proportional to the square of the size of the inputs
• E.g., outer product of two n-dimensional vectors requires

O(n2) storage (one per each entry of the resulting matrix)

Time and Space Complexity Can Differ

Inner product of two n-dimensional vectors
• O(n) time complexity to multiply n pairs of numbers
• O(1) space complexity to store result (which is a scalar)

Matrix inversion of an n × n matrix
• O(n3) time complexity to perform inversion
• O(n2) space complexity to store result

E.g., Matrix-Vector Multiply
Goal: multiply an n × m matrix with an m × 1 vector

Computing result takes O(nm) time
• There are n entries in the resulting vector
• Each entry computed via dot product between two m-

dimensional vectors (a row of input matrix and input vector)

Storing result takes O(n) space
• The result is an n-dimensional vector

E.g., Matrix-Matrix Multiply

Goal: multiply an n × m matrix with an m × p matrix

Computing result takes O(npm) time
• There are np entries in the resulting matrix
• Each entry computed via dot product between two m-

dimensional vectors

E.g., Matrix-Matrix Multiply
Goal: multiply an n × m matrix with an m × p matrix

Computing result takes O(npm) time
• There are np entries in the resulting matrix
• Each entry computed via dot product between two m-

dimensional vectors

Storing result takes O(np) space
• The result is an n × p matrix

