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Rapid growth of massive datasets

E.g., Online activity, Science, Sensor networks
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Distributed Clusters are Pervasive
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Mature Methods for Common Problems

e.g., classitication, regression, collaborative filtering, clustering
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VIL Is Applied Everywnere

—.J., personalized recommendations, speech recognition, face detection, protein
structure, fraud detection, spam filtering, playing chess or Jeopardy, unassisted vehicle
control, medical diagnosis
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Challenge: Scalability

Classic ML technigues are not always suitable for modern datasets
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Course Goals

Focus on scalablility challenges for common ML tasks

How can we use raw data to train statistical models”?
e Study typical ML pipelines
e Classification, regression, exploratory analysis

How can we do so at scale”
e Study distributed machine learning algorithms

e Implement distributed pipelines in Apache Spark
using real datasets

e Understand details of MLIib (Spark’s ML library)



Prerequisites

BerkeleyX CS105x - Introduction to Apache Spark
e Fundamentals of Spark

Basic Python, ML, math lbackground
e First week provides review of ML and useful math concepts

Self-assessment exam has pointers to review material
e Nhittp://cs.ucla.edu/~ameet/self assessment.pdf




Schedule

4 weeks of lectures, 4 Spark coding labs

e \Week 1: ML Overview, Math Review, Spark RDD Overview
e \Week 2: Distributed ML Principles and Linear Regression
e \Week 3: Classification with Click-through Rate Prediction
e \Week 4. Exploratory Analysis with Brain Imaging Data



Distributed Computing
and Apache Spark
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How to Handle Massive Data”?

Traditional tools (Matlab, R, Excel, etc.) run on a single machine



How to Handle Massive Data”?

Need more hardware to store / process modern data



How to Handle Massive Data”?

Need more hardware to store / process modern data

Scale-up (one big machine

® (Can be very fast for medium scale problems
® [Xxpensive, specialized hardware

® [Eventually hit a wall




How to Handle Massive Data”

Need more hardware to store / process modern data

Scale-out (distributed, e.q., cloud-based

® (Commodity hardware, scales to massive problems

® Need to deal with network communication
® Added software complexity
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What is Apache Spor‘llg "/

General, open-source cluster computing engine

Well-suited for machine learning
® [ast iterative procedures
® [fficient communication primitives

Simple and Expressive
e APIsin Scala, Java, Python, R

® |nteractive Shell

Spark
SQL
Integrated Higher-Level Libraries .

MLIib | GraphX

Apache Spark



What i1s Machine
Learning?
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A Definition

Constructing and studying methods that learn from and make
poredictions on data

Broad area involving tools and ideas from various domains
e Computer Science

® Probability and Statistics
® (Optimization
® | inear Algebra



Some Examples

Face recognition

Link prediction

Text or document classification, e.g., spam detection
Protein structure prediction

Games, e.q., Backgammon or Jeopardy




Terminology

Observations. |tems or entities used for learning or evaluation, e.g., emails

Features. Attributes (typically numeric) used to represent an observation,
e.g., length, date, presence of keywords

Labels. Values / categories assigned to observations, e.g., spam, not-spam

Training and Test Data. Observations used to train and evaluate a learning
algorithm, e.g., a set of emails along with their labels

e [raining data is given to the algorithm for training
e Jest data is withheld at train time



Two Common Learning Settings

Supervised learning. Learning from labeled observations
e |Labels ‘teach’ algorithm to learn mapping from observations to labels

Unsupervised learning. _.earning from unlabeled observations

e | earning algorithm must find latent structure from features alone

e (Can be goal In itself (discover hidden patterns, exploratory data analysis)
e Can be means to an end (preprocessing for supervised task)



Examples of Supervised Learning

Classification. Assign a category to each item, e.g., spam detection
e Categories are discrete
e (Generally no notion of ‘closeness’ in multi-class setting

Regression. Predict a real value for each item, e.q., stock prices
e | abels are continuous
e (Can define ‘closeness’ when comparing prediction with label



=xamples of Unsupervised Learning

Clustering. Partition observations into homogeneous regions, €.g., to
identify “communities” within large groups of people In social networks

Dimensionality Reduction. [ransform an initial feature representation
INtO a more concise representation, e.q., representing digital iImages



Typical Supervised
Learning Pipeline
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[ Obtain Raw Data ] Raw data comes from many sources




Data lypes

<html xnlns=

<head>
<meta http-equiv=
content

Web hypertext

<script type

function reDo() {top.
location.reload() ;]

1f (navigator.appName
) {top.onre

dom=document.

slze reDo; }

getElementByld;
</script>
</head>
<body>

< /body>




Data lypes

Warriors  woes »

_ 12814 Reply

We recently released our popular Moliday Moops packs. The packs also indude an exclusive Warriors Holday Card! These packs provide our
biggest games from January to March! A great gift for the holidays!!!

Holiday Hoops West Pack (Club 200 Sidelne-$303, Club 200 Basefine- $260)
Mon 1/5 vs Oklahoma City Thunder @ 7:30pm
Wed 1/21 vs Houston Rockets @ 7:.30pm

Sun 3/8 vs LA Clippers @ 12:30pm
Mon 3/16 vs LA Lakers & 7:30pm

Hollday Hoops East Pack /Club 200 Sidefine-$328, Club 200 Baselne- $283)
Fri 1/9 vs Cleveland @ 7:30pm
Wed 1/14 vs Miams @ 7:30pm

Tues 1/27 vs Chicago @ 7:30pm
S8t 3/14 vs New York @ 7:30pm

*Ability to exchange one game for a different date If needed.

Flex Plan 6+
If you are looking 10 attend 6 or more game games then you are able to pick any games from the remaing of the schedule.

If you would like 10 purchase one or hirve any qQuestions/concerns give me a call,

Emalll




Data lypes

Genomic Data, e.q., SNPs



Data lypes

Images



Data lypes

-ty
(\

iy =)
(Social) Networks / Graphs f@ ’( ‘(
g

WY
¢ L
3§
£
w

¥
(
\




User Ratings

Data lypes
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[ Obtain Raw Data J
4L

[ Feature Extraction ]

INnitial observations can be In arbitrary format
We extract features to represent observations
We can incorporate domain knowledge

We typically want numeric features

Success of entire pipeline often depends on
choosing good descriptions of observations!!



[ Obtain Raw Data J Irain a supervised model using labeled data,
i e.g., Classification or Regression model

[ Feature Extraction ]

4L
[ Supervised Learning J




Obtain Raw Data
L

Feature Extraction

Q: How do we determine the quality of the
model we've just trained”?

Supervised Learning .e., labeled data not used for training
JdL

Evaluation

[ J

[ J

[ < J A: We can evaluate it on test / hold-out data,
[ J It we don’t like the results, we iterate...




Once we’re happy with our model, we can
use It to make predictions on future
observations, I.e., data without a known label




Sample Classification
Pipeline

UCLA
€databricks




Classification

Goal: Learn a mapping from observations to discrete labels
given a set of training examples (supervised learning)

Example: Spam Classification
e Observations are emails
e Labels are {spam, not-spam} (Binary Classification)

e (iven a set of labeled emalls, we want to predict whether
a new emall Is spam or not-spam



Other Examples

Fraud detection: User activity — {fraud, not fraud}

Face detection: Images — set of people

Link prediction: Users — {suggest link, don’t suggest link}
Clickthrough rate prediction: User and ads — {click, no click}

Many others...



Classification Pipeline

training
set

Obtain Raw Data

—¥| Feature Extraction

(
{

.|
{ Supervised Learning
(
{

Raw data consists of a set of labeled
fraining observations

d

Evaluation

dL
Predict

— — — — (]




E.9., Spam Classification

Observation L abel

From: 1llegitimate@bad.com

"Eliminate your debt by Spam

glvling us your money..."

From: bob@good.com

"Hi, it's been a while! nOt_Spam

How are you? ..."

" [ Obtain Raw Data

—¥| Feature Extraction

(
[

.|
[ Supervised Learning
(
{

d

Evaluation

dL
Predict

— — — — ) (]




Classification Pipeline

training | @ oo 0

ot | =P A

Feature extraction typically transforms each
observations into a vector of real numbers (features)

Success or fallure of a classifier often depends on
choosing good descriptions of observations!!




=.g., Bag of Words”

From: illegitimate@bad.com

"Eliminate your debt by
giving us your money..."

From: boblgood.com

"Hi, it's been a while!
How are you? ...’

Observations are documents




From: illegitimate@bad.com

"Eliminate your debt by
giving us your money..."

From: boblgood.com

"Hi, it's been a while!
How are you? ...’

=.g., Bag of Words”

Vocabulary

been
debt
_> eliminate
gliving
how
1t's
money
while

Observations are documents

Bulld Vocabulary




From: illegitimate@bad.com

"Eliminate your debt by
giving us your money..."

From: boblgood.com

"Hi, it's been a while!
How are you? ...’

=.g., Bag of WWords”

—>

Vocabulary

been
debt From: illegitimate@bad.com
eliminate
glving
how

"Eliminate your debt by
giving us your money..."

it's
money
while

Observations are documents

Bulld Vocabulary

Derive feature vectors from Vocabulary

been

debt
elimlinate
gilving
how

1t's

money

while




Classification Pipeline

training | @ oo 0

set —PIHIIIIIIIIIS—P£C|aSSifiel’J

—




Classification Pipeline

training | @ oo 0

set —P::::::::::::%—PLclassifierJ

Supervised Learning: Train classifier using training data
e Common classifiers include Logistic Regression, SVMs, Decision —»
Trees, Random Forests, etc.

Training (especially at scale) often involves iterative
computations, e.g., gradient descent




=.g., Logistic Regression

Goal: Find linear decision boundary

® Parameters to learn are feature weights and offset
® Nice probabillistic interpretation

® (Covered in more detall later in course

—




Classification Pipeline

training | @ oo 0

set —>::::::::::::S—>Lclassifier}

How can we evaluate the quality of our classifier?

We want good predictions on unobserved data
® ’Generalization’ ability

Accuracy on training data Is overly optimistic since

classifier has already learned from it
e \We might be ‘overfitting’

—

Obtain Raw Data
dL

Feature Extraction

4




Overfitting and Generalization

Fitting training data does not guarantee generalization, e.g., lookup table
|eft: perfectly fits training samples, but it is complex / overtitting
Right: misclassifies a few points, but simple / generalizes

Occam’s razor

Obtain Raw Data
dL

Feature Extraction

4

—




Classification Pipeline

training | @ oo 0

set —>::::::::::::S—>Lclassifier}

How can we evaluate the quality of our classifier?
|[dea: Create test set to simulate unobserved data

—

Obtain Raw Data
dL

Feature Extraction

4




Classification Pipeline

training | @ oo 0

set —>::::::::::::%—>LclassifierJ

full e e e e
dataset | wep
e e e e
test set *II:II:II:II:D =P accuracy

Evaluation: Split dataset into training / testing datasets

® [rain on training set (don’'t expose test set to classifier)
® Make predictions on test set (ignoring test labels)
o Compare test predictions with underlying test labels

—

[ J
[ J
| Supenvised Learning |
[ Eauion ]
[ ' J




Classification Pipeline

training | @ oo 0

set —>::::::::::::%—>LclassifierJ

full T O

dataset | wep

test set | == SO0 O == gocuracy

Obtain Raw Data
dL

Feature Extraction

4

Evaluation: Split dataset into training / testing datasets

® \/arious ways to compare predicted and true labels
® [valuation criterion is called a ‘loss’ function
® Accuracy (or O-1 loss) iIs common for classification

—




Classification Pipeline

" | = — | classfier
ful SSSssssss=sf=
dataset | wep / \ ............ =
/new entity
test set | =P % = accuracy  prediction
{ Obtain Raw Data J
4L
—*[ Feature Extraction }
Predict: Final classifier can then be used to <+
, , , [ Supervised Learning J
Mmake predictions on future observations, e.g., T
new emails we receive —(__ Evaluaton |
dun Prdlt —

S TS S N




Linear Algebra Review
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\Viatrices

A matrix Is a 2-dimensional array

3.3
1.0
6.3
3.6

5.3
4.5
1.0
4.7

4.5
3.4
2.2
3.9




\Viatrices

Al
/ —
33)75.3 4.5

o | | 1.0 45 34 Ay
A matrix is a 2-dimensional array A= 1631022

3 3.6 47 89

Notation:

® Matrices are denoted by bold uppercase letters
® A, denotes the entry in ith row and jth column

® |fAisnxm,ithasnrowsan m columns
® [fAisnxm, then A € R"*™



Vectors

3.3

A vector Is a matrix with q — 1.0]
many rows and one column 0.3
3.6

Notation:
® \/ectors are denoted by bold lowercase letters
® 3; denotes the ith entry

® [faismdmensional, then ac R"



lranspose

Swap the rows and columns of a matrix

A
\\ .
14 116 3
6 1| = 4| = (3] 4 1]
41 1 5 -
_3 5 a - 1
3x?2 2 x 3 3x1 1 x3

(A")21

Properties of matrix transposes:
* Aj=(A");

® fAisnxm,then ATism x n



Addition and Subtraction

These are element-wise operations

'35+'45_'345+5'
Addition: g 1| T8 12| T [6+8 1412
|7 10
14 13
. 5! [4] _[5—4
Subtraction: 173 T i3




Addition and Subtraction

The matrices must have the same dimensions

S5 [4] [ 1
1| (3] |2
3 5 4'+'4 5 1] [7 10 5
6 1 2| |8 12 9| |14 13 11
3 5 4'+4
6 1 2| |8




Matrix Scalar Multiplication

We multiply each matrix element by the scalar value

3 X

— (N
\O AN
I*_; |
o O

W
P n

b
AN

IO\ wl

—0.5 x




Scalar Product

A function that maps two vectors to a scalar

1] 4]
4l - |2 | =-9
3] |-7

]l x4

Performs pairwise multiplication of vector elements



Scalar Product

A function that maps two vectors to a scalar
1 4 ]
4] -1 2| =-9

Il x4+4x2

Performs pairwise multiplication of vector elements



Scalar Product

A function that maps two vectors to a scalar

1 4
4 2 | =-9
31 [=7)

Performs pairwise multiplication of vector elements
The two vectors must be the same dimension

Also known as dot product or inner product



Viatrix-Vector Multiplication

Involves repeated scalar products




Viatrix-Vector Multiplication

Involves repeated scalar products

1 x4+4x243x(=7)=-9
6X4+1x24+2x%x(=7)=12



ith row

Viatrix-Vector Multiplication

A

W

)

m X 1

y

y; equals scalar
product between ith
row of A and w

We repeat for each
row of A, sO If Ahas

1 rOwWS, SO does 'y



Viatrix-Vector Multiplication

A W y
B y; equals scalar
. product between ith
/th row [ ] — row of A and w
We repeat for each
m?l B row of A, so If A has

nxm
\ / 1 rOwWS, SO does 'y

To perform inner products, # columns
N A must equal # rows of w




Scalar Product Revisited

X' \Y, y
Special case of Matrix- 1
Vector Multiplication I — scalar product
1 x m m x 1 scalar (1 x 1)

Vectors assumed to be in column form (many rows, one column)
Transposed vectors are row vectors

Common notation for scalar product: x'w



Matrix-Matrix Multiplication

Also Involves several scalar products

[[9 ; 511 .| 2 :lZS 1
2| 3

OX14+3X3+5%x2=28



Matrix-Matrix Multiplication

Also Involves several scalar products

[[9 3 511 ; _25 - [zs 181
4 1 2 Nk 11 9

OX14+3X3+5%x2=28

OX2+3x(—=5)+5x3=18



Matrix-Matrix Multiplication

A . B C .
Jth col ~__ C,j is scalar product
B of ith row of A and

ith row \{ _ jth column of B
: J _
- We repeat for each
nx m mx p row of A, so If A has
/ / \ / n rows, so does C
To perform Inner products, We repeat for each

columns in Amust equal  column of B, so if B has p
rows of B columns, so does C




Matrix-Matrix Multiplication

A

B

—/

nxm m X p

C

- o

nxp

Associative, 1.e., (AB)C = A(BC)

Not commutative, I.e., AB # BA



Outer Product

X \\al C
e '
Special case of Matrix-Matrix —
Multiplication involving two vectors —
8
nxl I Xxm nXxXm

C;jis “inner product” of ith entry of x and jth entry of w



|dentity Matrix

One is the scalar multiplication identity, 1.e., ¢ x I = ¢

I, I1s the n x n 1dentity matrix, 1.e., I,A = A and Al, = A for any
n X m matrix A

— (I
SO
O = O

— (I

I _h @I
l l\) Ull
I _h @I
l [\) U]I

|[dentity matrices are square, with ones on the diagonal entries



INnverse Matrix

1/c 1S the scalar inverse, I1.e., ¢ x 1/c = 1

Multiplying a matrix by its inverse results in the identity matrix

® [orann x nmatrix A, A-l denotes its inverse (when it exists)

e AA=AA=I,

Only a square matrix (when n = m) can have an inverse



Euclidean Norm for Vectors

The magnitude / length of a scalar is its absolute value

Vector norms generalize this idea for vectors

The Euclidean norm for x € R™ is denoted by |[|x||»

o |x|2=1/x{+x5+...+x

® [quals absolute value when m=1

e Related to scalar product: ||x||5 = x ' x



Big O Notation for Time
and Space Complexity
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Big O Notation

Describes how algorithms respond to changes in input size
® Both in terms of processing time and space requirements
® \\e refer to complexity and Big O notation synonymously

Required space proportional to units of storage
® [ypically 8 bytes to store a floating point number

Required time proportional to number of ‘basic operations’
® Arithmetic operations (+, —, x, /), logical tests (<, >, ==)



Big O Notation
Notation: fix) = O(g(x))
® (Can describe an algorithm’s time or space complexity
Informal definition: f does not grow faster than g

Formal definition: |[fix)| < Clg(x)] Vx> N

lgnores constants and lower-order terms
® [or large enough x, these terms won't matter
® Eg., x*+3x<Cx* Vx>N



E.9., O(1) Complexity

Constant time algorithms perform the same number of
operations every time they’re called

® E.g., performing a fixed number of arithmetic operations

Similarly, constant space algorithms require a fixed amount of
storage every time they’re called

® E.g., storing the results of a fixed number of arithmetic
operations



E.g., O(n) Complexity

Linear time algorithms perform a number of operations
oroportional to the number of Inputs

e [E.0., adding two n-dimensional vectors requires O(n)
arithmetic operations

Similarly, linear space algorithms require storage proportional

to the size of the inputs

® [.g., adding two n-dimensional vectors results in a new n-
dimensional vector which requires O(n) storage



E.9., O(n?) Complexity

Quadratic time algorithms perform a number of operations
oroportional to the square of the number of Inputs

® |.g., outer product of two n-dimensional vectors requires

O(n?) multiplication operations (one per each entry of the
resulting matrix)

Similarly, quadratic space algorithms require storage
oroportional to the square of the size of the Inputs

® .g., outer product of two n-dimensional vectors requires
O(n?) storage (one per each entry of the resulting matrix)



Time and Space Complexity Can Differ

INnner product of two n-dimensional vectors
e (O(n) time complexity to multiply » pairs of numbers
e (1) space complexity to store result (which is a scalar)

Matrix inversion of an n x n matrix
e (O(n’) time complexity to perform inversion
e (O(n?) space complexity to store result



=.g., Matrix-Vector Multiply

Goal: multiply an n x m matrix with an m x 1 vector

Computing result takes O(nm) time
® [here are n entries In the resulting vector

® Lach entry computed via dot product between two mi-
dimensional vectors (a row of input matrix and input vector)

Storing result takes O(n) space
® |[he result Is an n-dimensional vector



=.g., Matrix-Matrix Multiply

Goal: multiply an n x m matrix with an m x p matrix

Computing result takes O(npm) time
® [here are np entries in the resulting matrix

® Lach entry computed via dot product between two mi-
dimensional vectors



=.g., Matrix-Matrix Multiply

Goal: multiply an n x m matrix with an m x p matrix

Computing result takes O(npm) time
® [here are np entries in the resulting matrix

® Lach entry computed via dot product between two mi-
dimensional vectors

Storing result takes O(np) space
® [heresultis an n x p matrix



