
Overview



Rapid growth of massive datasets 
E.g., Online activity, Science, Sensor networks
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Mature Methods for Common Problems  
e.g., classification, regression, collaborative filtering, clustering 
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structure, fraud detection, spam filtering, playing chess or Jeopardy, unassisted vehicle 
control, medical diagnosis
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Classic ML techniques are not always suitable for modern datasets
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Challenge: Scalability
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Focus on scalability challenges for common ML tasks

How can we use raw data to train statistical models?
• Study typical ML pipelines
• Classification, regression, exploratory analysis 

How can we do so at scale?
• Study distributed machine learning algorithms
• Implement distributed pipelines in Apache Spark 

using real datasets
• Understand details of MLlib (Spark’s ML library)

Course Goals

Machine  
Learning

Data

Distributed 
Computing



BerkeleyX CS105x - Introduction to Apache Spark 
• Fundamentals of Spark 

Basic Python, ML, math background 
• First week provides review of ML and useful math concepts 

Self-assessment exam has pointers to review material 
• http://cs.ucla.edu/~ameet/self_assessment.pdf

Prerequisites



4 weeks of lectures, 4 Spark coding labs 
• Week 1: ML Overview, Math Review, Spark RDD Overview 
• Week 2: Distributed ML Principles and Linear Regression 
• Week 3: Classification with Click-through Rate Prediction 
• Week 4: Exploratory Analysis with Brain Imaging Data

Schedule



Distributed Computing 
and Apache Spark



How to Handle Massive Data?
Traditional tools (Matlab, R, Excel, etc.) run on a single machine



Need more hardware to store / process modern data

How to Handle Massive Data?



Need more hardware to store / process modern data
Scale-up (one big machine)
• Can be very fast for medium scale problems
• Expensive, specialized hardware
• Eventually hit a wall

How to Handle Massive Data?
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How to Handle Massive Data?
Need more hardware to store / process modern data
Scale-out (distributed, e.g., cloud-based)
• Commodity hardware, scales to massive problems
• Need to deal with network communication
• Added software complexity
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General, open-source cluster computing engine

Well-suited for machine learning
• Fast iterative procedures
• Efficient communication primitives

Simple and Expressive
• APIs in Scala, Java, Python, R
• Interactive Shell  

Integrated Higher-Level Libraries

What is Apache            ?

Spark 
SQL

Apache Spark

Spark 
Streaming MLlib GraphX



What is Machine 
Learning?



Constructing and studying methods that learn from and make 
predictions on data 

Broad area involving tools and ideas from various domains
• Computer Science
• Probability and Statistics 
• Optimization
• Linear Algebra

A Definition



Some Examples
Face recognition

Link prediction

Text or document classification, e.g., spam detection

Protein structure prediction

Games, e.g., Backgammon or Jeopardy



Observations. Items or entities used for learning or evaluation, e.g., emails

Features. Attributes (typically numeric) used to represent an observation, 
e.g., length, date, presence of keywords

Labels. Values / categories assigned to observations, e.g., spam, not-spam

Training and Test Data. Observations used to train and evaluate a learning 
algorithm, e.g., a set of emails along with their labels
• Training data is given to the algorithm for training
• Test data is withheld at train time

Terminology



Two Common Learning Settings

Supervised learning. Learning from labeled observations
• Labels ‘teach’ algorithm to learn mapping from observations to labels
 
 
Unsupervised learning. Learning from unlabeled observations
• Learning algorithm must find latent structure from features alone
• Can be goal in itself (discover hidden patterns, exploratory data analysis)
• Can be means to an end (preprocessing for supervised task)



Examples of Supervised Learning

Classification. Assign a category to each item, e.g., spam detection
• Categories are discrete
• Generally no notion of ‘closeness’ in multi-class setting  
 

Regression. Predict a real value for each item, e.g., stock prices
• Labels are continuous
• Can define ‘closeness’ when comparing prediction with label



Examples of Unsupervised Learning

Clustering. Partition observations into homogeneous regions, e.g., to 
identify “communities” within large groups of people in social networks

Dimensionality Reduction. Transform an initial feature representation 
into a more concise representation, e.g., representing digital images



Typical Supervised 
Learning Pipeline



Raw data comes from many sourcesObtain Raw Data



Data Types

Web hypertext



Data Types

Email



Data Types

Genomic Data, e.g., SNPs



Data Types

Images



Data Types

(Social) Networks / Graphs



User Ratings

Data Types



Initial observations can be in arbitrary format
We extract features to represent observations
We can incorporate domain knowledge
We typically want numeric features
Success of entire pipeline often depends on 
choosing good descriptions of observations!!

Obtain Raw Data

Feature Extraction



Train a supervised model using labeled data, 
e.g., Classification or Regression model

Obtain Raw Data

Feature Extraction

Supervised Learning



Q: How do we determine the quality of the 
model we’ve just trained?
A: We can evaluate it on test / hold-out data, 
i.e., labeled data not used for training
If we don’t like the results, we iterate…

Obtain Raw Data

Feature Extraction

Supervised Learning

Evaluation



Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning
Once we’re happy with our model, we can 
use it to make predictions on future 
observations, i.e., data without a known label



Sample Classification 
Pipeline



Classification

Goal: Learn a mapping from observations to discrete labels 
given a set of training examples (supervised learning)

Example: Spam Classification
• Observations are emails
• Labels are {spam, not-spam} (Binary Classification)
• Given a set of labeled emails, we want to predict whether 

a new email is spam or not-spam



Other Examples

Fraud detection: User activity → {fraud, not fraud}

Face detection: Images → set of people

Link prediction: Users → {suggest link, don’t suggest link}

Clickthrough rate prediction: User and ads → {click, no click}

Many others…



training 
set

Classification Pipeline

Raw data consists of a set of labeled 
training observations

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning



E.g., Spam Classification
Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by 
giving us your money..."

From: bob@good.com

"Hi, it's been a while!  
How are you? ..."

spam

not-spam

Observation

spam

not-spam

Label

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning



training 
set

Classification Pipeline

Feature extraction typically transforms each 
observations into a vector of real numbers (features) 

Success or failure of a classifier often depends on 
choosing good descriptions of observations!!

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning



E.g., “Bag of Words” 

Observations are documents
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E.g., “Bag of Words” 

Observations are documents

Build Vocabulary
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E.g., “Bag of Words” 

Observations are documents
Build Vocabulary
Derive feature vectors from Vocabulary

Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by 
giving us your money..."

From: bob@good.com

"Hi, it's been a while!  
How are you? ..."

Vocabulary
been
debt

eliminate
giving
how
it's
money
while

Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by 
giving us your money..."

From: bob@good.com

"Hi, it's been a while!  
How are you? ..."

Vocabulary
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Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by 
giving us your money..."
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giving
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Feature Extraction
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Supervised Learning
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Classification Pipeline
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Predict
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training 
set classifier

Classification Pipeline

Supervised Learning: Train classifier using training data
• Common classifiers include Logistic Regression, SVMs, Decision 

Trees, Random Forests, etc.  

Training (especially at scale) often involves iterative 
computations, e.g., gradient descent

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning



E.g., Logistic Regression

Goal: Find linear decision boundary
• Parameters to learn are feature weights and offset 
• Nice probabilistic interpretation
• Covered in more detail later in course

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning



How can we evaluate the quality of our classifier?
We want good predictions on unobserved data
• ’Generalization’ ability
Accuracy on training data is overly optimistic since 
classifier has already learned from it
• We might be ‘overfitting’

Classification Pipeline

training 
set classifier

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning



Fitting training data does not guarantee generalization, e.g., lookup table
Left: perfectly fits training samples, but it is complex / overfitting 
Right: misclassifies a few points, but simple / generalizes
Occam’s razor

Overfitting and Generalization

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning



How can we evaluate the quality of our classifier?
Idea: Create test set to simulate unobserved data

Classification Pipeline

training 
set classifier

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning



Evaluation: Split dataset into training / testing datasets
• Train on training set (don’t expose test set to classifier)
• Make predictions on test set (ignoring test labels)
• Compare test predictions with underlying test labels

Classification Pipeline

training 
set classifier

full 
dataset

test set accuracy

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning



Classification Pipeline

training 
set classifier

full 
dataset

test set accuracy

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Evaluation: Split dataset into training / testing datasets 
• Various ways to compare predicted and true labels 
• Evaluation criterion is called a ‘loss’ function 
• Accuracy (or 0-1 loss) is common for classification



new entity

prediction

Classification Pipeline

Predict: Final classifier can then be used to 
make predictions on future observations, e.g., 
new emails we receive

training 
set classifier

full 
dataset

test set accuracy

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning



Linear Algebra Review 



Matrices
�

���

3.3 5.3 4.5
1.0 4.5 3.4
6.3 1.0 2.2
3.6 4.7 8.9

�

���A matrix is a 2-dimensional array



Matrices

Notation:
• Matrices are denoted by bold uppercase letters
• Aij denotes the entry in ith row and jth column
• If A is n × m, it has n rows an m columns
• If A is n × m, then A                  

�

���

3.3 5.3 4.5
1.0 4.5 3.4
6.3 1.0 2.2
3.6 4.7 8.9

�

���

A11

A32

� Rn�m

A  =A matrix is a 2-dimensional array
4 × 3



Vectors

Notation:
• Vectors are denoted by bold lowercase letters
• ai denotes the ith entry
• If a is m dimensional, then a                  

�

���

3.3
1.0
6.3
3.6

�

���

a2

a  =A vector is a matrix with 
many rows and one column

� Rm



Transpose
Swap the rows and columns of a matrix
 
 
 
 
 
 
 
 
Properties of matrix transposes:
• Aij = (A⊤)ji

• If A is n × m, then A⊤ is m × n

 3 × 2  2 × 3

�

�
3
4
1

�

� =�
�
3 4 1

�
�

�
1 4
6 1
3 5

�

� =�
�
1 6 3
4 1 5

�

 3 × 1  1 × 3

A12

(A⊤)21



Addition and Subtraction
These are element-wise operations

�
3 5
6 1

�
+

�
4 5
8 12

�
=

�
3+ 4 5+ 5
6+ 8 1+ 12

�

=

�
7 10
14 13

�
Addition:

Subtraction:
�
5
1

�
�

�
4
3

�
=

�
5� 4
1� 3

�

=

�
1

�2

�



Addition and Subtraction
The matrices must have the same dimensions

�
3 5 4
6 1 2

�
+

�
4 5 1
8 12 9

�
=

�
7 10 5
14 13 11

�

�
3 5 4
6 1 2

�
+

�
4 5
8 12

�
=

�
5
1

�
�

�
4
3

�
=

�
1

�2

�



Matrix Scalar Multiplication
We multiply each matrix element by the scalar value

3�
�
3 5 4
6 1 2

�
=

�
9 15 12
18 3 6

�

�0.5�
�
3
8

�
=

�
�1.5
�4

�



Scalar Product

A function that maps two vectors to a scalar

 
Performs pairwise multiplication of vector elements

1� 4+ 4� 2+ 3� (�7) = �9

�

�
1
4
3

�

� ·

�

�
4
2

�7

�

� = �9
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Scalar Product
A function that maps two vectors to a scalar

 
Performs pairwise multiplication of vector elements

The two vectors must be the same dimension 

Also known as dot product or inner product

1� 4+ 4� 2+ 3� (�7) = �9

�

�
1
4
3

�

� ·

�

�
4
2

�7

�

� = �9



Matrix-Vector Multiplication
Involves repeated scalar products

�
1 4 3
6 1 2

� �

�
4
2

�7

�

� =

�
�9
12

�

1� 4+ 4� 2+ 3� (�7) = �9



Matrix-Vector Multiplication
Involves repeated scalar products

�
1 4 3
6 1 2

� �

�
4
2

�7

�

� =

�
�9
12

�

1� 4+ 4� 2+ 3� (�7) = �9

6� 4+ 1� 2+ 2� (�7) = 12



Matrix-Vector Multiplication

� � �

�

�

� =

� �
A w y

 m × 1 

ith row

yi equals scalar 
product between ith 

row of A and w

We repeat for each 
row of A, so if A has 
n rows, so does y



Matrix-Vector Multiplication

� � �

�

�

� =

� �
A w y

 n × m  m × 1  n × 1

ith row

yi equals scalar 
product between ith 

row of A and w

To perform inner products, # columns 
in A must equal # rows of w

We repeat for each 
row of A, so if A has 
n rows, so does y



Scalar Product Revisited

Vectors assumed to be in column form (many rows, one column)

Transposed vectors are row vectors

Common notation for scalar product: x⊤w

� � �

�

�

� =

� �
x⊤ w y

�

�
� �
� �

=
�
�

scalar product

 1 × m  m × 1 scalar (1 × 1)

Special case of Matrix-
Vector Multiplication



Matrix-Matrix Multiplication
Also involves several scalar products

�
9 3 5
4 1 2

� �

�
1 2
3 �5
2 3

�

� =

�
28 18
11 9

�

9� 1+ 3� 3+ 5� 2 = 28



Matrix-Matrix Multiplication
Also involves several scalar products

�
9 3 5
4 1 2

� �

�
1 2
3 �5
2 3

�

� =

�
28 18
11 9

�

9� 1+ 3� 3+ 5� 2 = 28

9� 2+ 3� (�5) + 5� 3 = 18



Matrix-Matrix Multiplication

A B C

 m × p  n × m  n × p

� � �

�

�

� =

� �

To perform inner products, 
# columns in A must equal 

# rows of B

Cij is scalar product 
of ith row of A and 
jth column of B

We repeat for each 
row of A, so if A has 

n rows, so does C

ith row

jth col

We repeat for each 

column of B, so if B has p 
columns, so does C



Matrix-Matrix Multiplication
A B C

 m × p  n × m  n × p

� � �

�

�

� =

� �

Associative, i.e., (AB)C = A(BC) 

Not commutative, i.e., AB ≠ BA



Outer Product

Cij is “inner product” of ith entry of x and jth entry of w

� � �

�

�

� =

� �
x w⊤ C

�

�
� �
� �

=
�
�

 n × 1 1 × m n × m 

� � �

�

�

� =

� �
Special case of Matrix-Matrix 

Multiplication involving two vectors

� � �

�

�

� =

� �



Identity Matrix

One is the scalar multiplication identity, i.e., c × 1 = c

In is the n × n identity matrix, i.e., InA = A and AIm = A for any 
n × m matrix A
 
 
 
 
 
Identity matrices are square, with ones on the diagonal entries

�
9 3 5
4 1 2

� �

�
1 0 0
0 1 0
0 0 1

�

� =

�
9 3 5
4 1 2

�



Inverse Matrix

1/c is the scalar inverse, i.e., c × 1/c = 1  

Multiplying a matrix by its inverse results in the identity matrix

• For an n × n matrix A, A-1 denotes its inverse (when it exists)

• AA-1 = A-1A = In

 
Only a square matrix (when n = m) can have an inverse



The magnitude / length of a scalar is its absolute value

Vector norms generalize this idea for vectors

The Euclidean norm for              is denoted by 

•  sd 

• Equals absolute value when m=1

• Related to scalar product: 

Euclidean Norm for Vectors

�x�22 = x�x

�x�2

�x�2 =
�
x21 + x22 + . . . + x2m

x � Rm



Big O Notation for Time 
and Space Complexity



Big O Notation
Describes how algorithms respond to changes in input size 
• Both in terms of processing time and space requirements 
• We refer to complexity and Big O notation synonymously

Required space proportional to units of storage 
• Typically 8 bytes to store a floating point number

Required time proportional to number of ‘basic operations’ 
• Arithmetic operations (+, −, ×, /), logical tests (<, >, ==)



Big O Notation
Notation: 
• Can describe an algorithm’s time or space complexity

Informal definition:    does not grow faster than

Formal definition: 

Ignores constants and lower-order terms 
• For large enough   , these terms won’t matter 
• E.g., 

f(x) = O(g(x)) �� |f(x)| � C|g(x)| �x > N

f(x) = O(g(x)) �� |f(x)| � C|g(x)| � x > N

x2 + 3x � Cx2 � x > N

f g

x2 + 3x � Cx2 � x > N



E.g., O(1) Complexity

Constant time algorithms perform the same number of 
operations every time they’re called 
• E.g., performing a fixed number of arithmetic operations  

Similarly, constant space algorithms require a fixed amount of 
storage every time they’re called 
• E.g., storing the results of a fixed number of arithmetic 

operations



E.g., O(n) Complexity
Linear time algorithms perform a number of operations 
proportional to the number of inputs 
• E.g., adding two n-dimensional vectors requires O(n) 

arithmetic operations 

Similarly, linear space algorithms require storage proportional 
to the size of the inputs 
• E.g., adding two n-dimensional vectors results in a new n-

dimensional vector which requires O(n) storage



E.g., O(n2) Complexity
Quadratic time algorithms perform a number of operations 
proportional to the square of the number of inputs 
• E.g., outer product of two n-dimensional vectors requires 

O(n2) multiplication operations (one per each entry of the 
resulting matrix) 

Similarly, quadratic space algorithms require storage 
proportional to the square of the size of the inputs 
• E.g., outer product of two n-dimensional vectors requires 

O(n2) storage (one per each entry of the resulting matrix)



Time and Space Complexity Can Differ

Inner product of two n-dimensional vectors 
• O(n) time complexity to multiply n pairs of numbers 
• O(1) space complexity to store result (which is a scalar)

Matrix inversion of an n × n matrix 
• O(n3) time complexity to perform inversion 
• O(n2) space complexity to store result



E.g., Matrix-Vector Multiply
Goal: multiply an n × m matrix with an m × 1 vector

Computing result takes O(nm) time 
• There are n entries in the resulting vector 
• Each entry computed via dot product between two m-

dimensional vectors (a row of input matrix and input vector)

Storing result takes O(n) space 
• The result is an n-dimensional vector



E.g., Matrix-Matrix Multiply

Goal: multiply an n × m matrix with an m × p matrix

Computing result takes O(npm) time 
• There are np entries in the resulting matrix 
• Each entry computed via dot product between two m-

dimensional vectors



E.g., Matrix-Matrix Multiply
Goal: multiply an n × m matrix with an m × p matrix

Computing result takes O(npm) time 
• There are np entries in the resulting matrix 
• Each entry computed via dot product between two m-

dimensional vectors

Storing result takes O(np) space 
• The result is an n × p matrix


