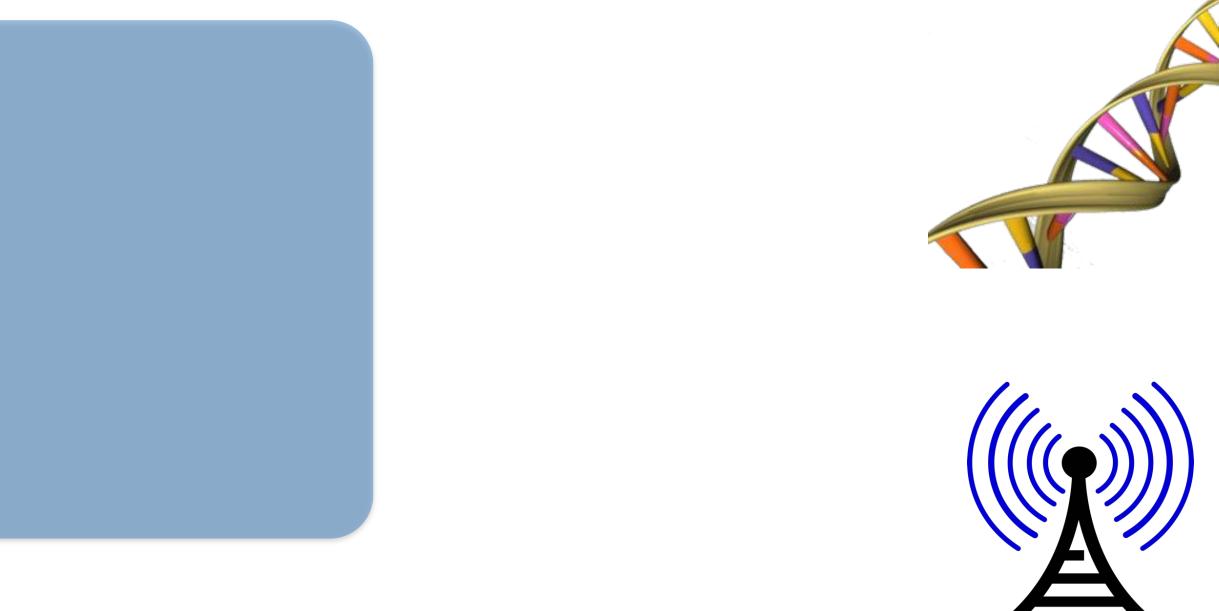
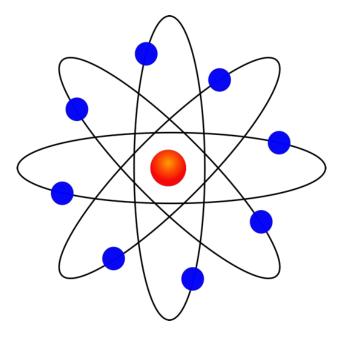


Rapid growth of massive datasets E.g., Online activity, Science, Sensor networks

Data





Distributed Clusters are Pervasive

Data

Distributed Computing

Mature Methods for Common Problems

e.g., classification, regression, collaborative filtering, clustering

Data

Distributed Computing

Machine Learning

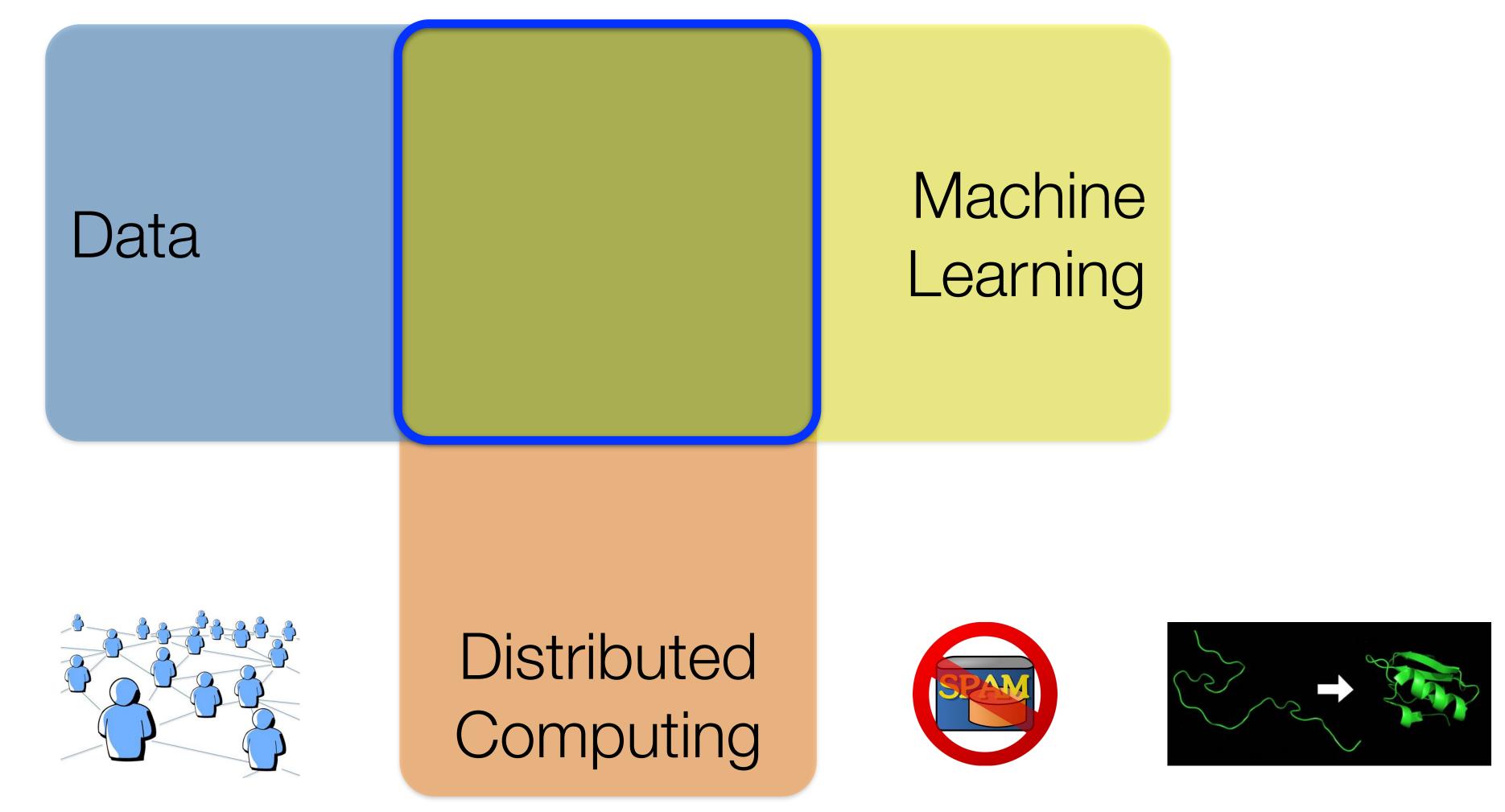
ML is Applied Everywhere

E.g., personalized recommendations, speech recognition, face detection, protein structure, fraud detection, spam filtering, playing chess or Jeopardy, unassisted vehicle control, medical diagnosis

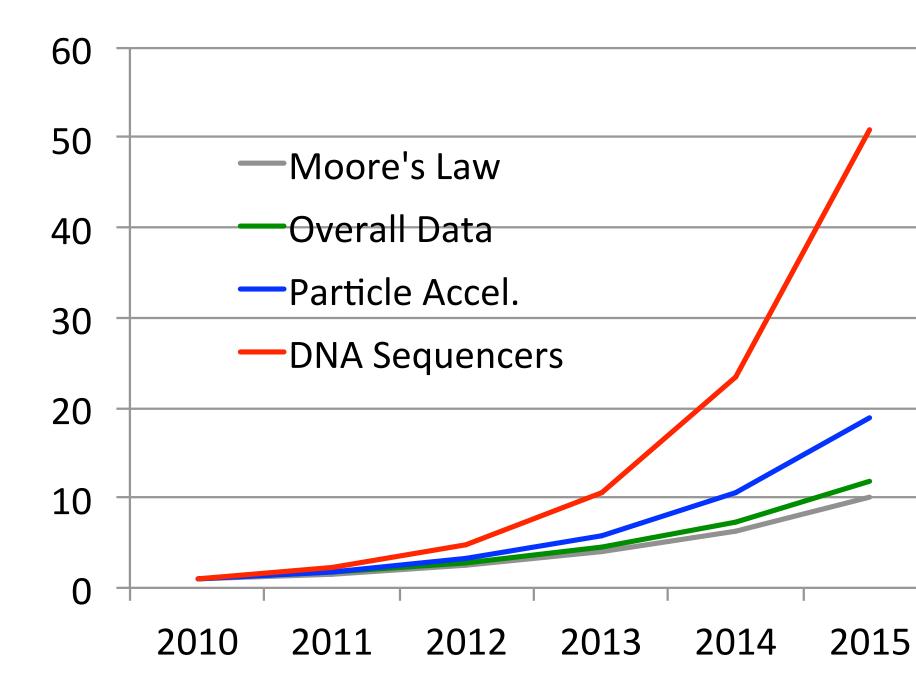


ML is Applied Everywhere

E.g., personalized recommendations, speech recognition, face detection, protein structure, fraud detection, spam filtering, playing chess or Jeopardy, unassisted vehicle control, medical diagnosis

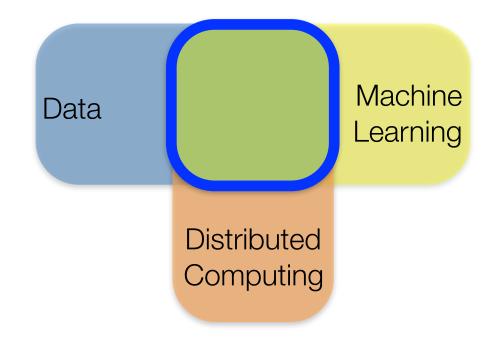


Challenge: Scalability



Classic ML techniques are not always suitable for modern datasets

Data Grows Faster than Moore's Law [IDC report, Kathy Yelick, LBNL]



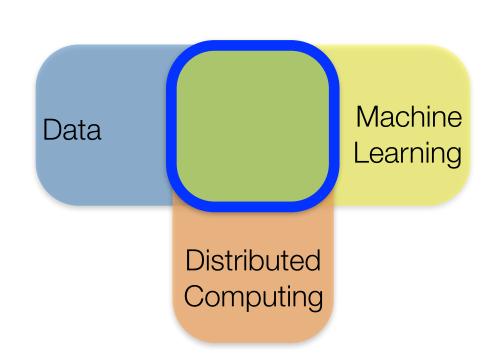
Course Goals

- How can we use raw data to train statistical models?
- Study typical ML pipelines
- Classification, regression, exploratory analysis

How can we do so at scale?

- Study distributed machine learning algorithms
- Implement distributed pipelines in Apache Spark using real datasets
- Understand details of MLlib (Spark's ML library)

Focus on scalability challenges for common ML tasks



Prerequisites

BerkeleyX CS105x - Introduction to Apache Spark • Fundamentals of Spark

Basic Python, ML, math background

http://cs.ucla.edu/~ameet/self_assessment.pdf

- First week provides review of ML and useful math concepts
- Self-assessment exam has pointers to review material

Schedule

4 weeks of lectures, 4 Spark coding labs

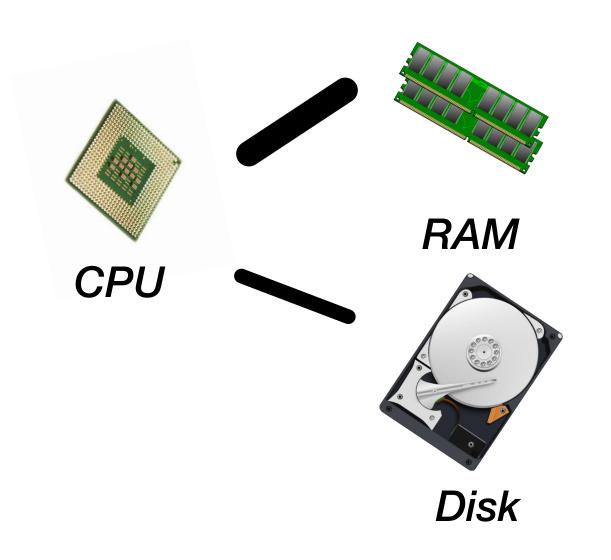
- Week 1: ML Overview, Math Review, Spark RDD Overview
- Week 2: Distributed ML Principles and Linear Regression
- Week 3: Classification with Click-through Rate Prediction
- Week 4: Exploratory Analysis with Brain Imaging Data

Distributed Computing and Apache Spark

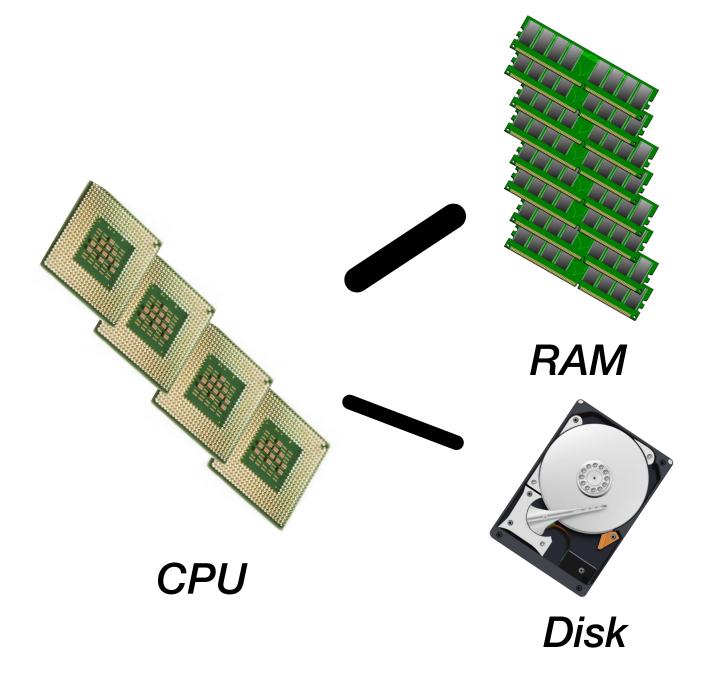
Traditional tools (Matlab, R, Excel, etc.) run on a single machine

Need more hardware to store / process modern data

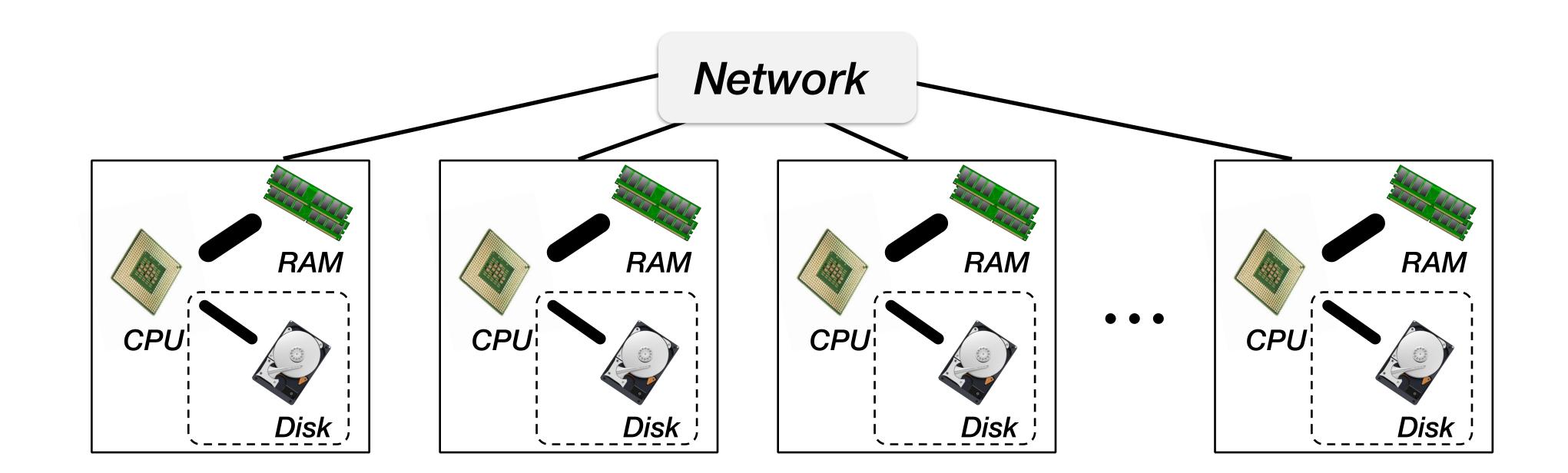
- **Scale-up** (one big machine) • Can be very fast for medium scale problems • Expensive, specialized hardware
- Eventually hit a wall



Need more hardware to store / process modern data



- **Scale-out** (distributed, e.g., cloud-based) • Commodity hardware, scales to massive problems Need to deal with network communication Added software complexity



Need more hardware to store / process modern data

Well-suited for machine learning

- Fast iterative procedures
- Efficient communication primitives

Simple and Expressive

- APIs in Scala, Java, Python, R
- Interactive Shell

Integrated Higher-Level Libraries

- General, open-source cluster computing engine

Spark MLlib Apache Spark

What is Machine Learning?

A Definition

Broad area involving tools and ideas from various domains

- Computer Science
- Probability and Statistics
- Optimization
- Linear Algebra

Constructing and studying methods that learn from and make predictions on data

Face recognition

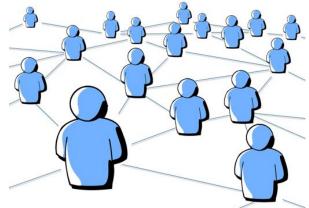
Link prediction

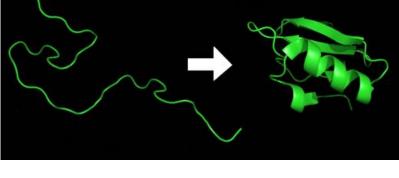
Text or document classification, e.g., spam detection

Protein structure prediction

Games, e.g., Backgammon or Jeopardy

Some Examples





Terminology

e.g., length, date, presence of keywords

- **Training and Test Data.** Observations used to train and evaluate a learning algorithm, e.g., a set of emails along with their labels • Training data is given to the algorithm for training
- Test data is withheld at train time

- **Observations**. Items or entities used for learning or evaluation, e.g., emails
- **Features**. Attributes (typically numeric) used to represent an observation,
- **Labels**. Values / categories assigned to observations, e.g., spam, not-spam

Supervised learning. Learning from labeled observations

- Unsupervised learning. Learning from unlabeled observations • Learning algorithm must find latent structure from features alone • Can be goal in itself (discover hidden patterns, exploratory data analysis) • Can be means to an end (preprocessing for supervised task)

Two Common Learning Settings

• Labels 'teach' algorithm to learn mapping from observations to labels

Examples of Supervised Learning

- Categories are discrete
- Generally no notion of 'closeness' in multi-class setting

Regression. Predict a real value for each item, e.g., stock prices

- Labels are continuous
- Can define 'closeness' when comparing prediction with label

Classification. Assign a category to each item, e.g., spam detection

Examples of Unsupervised Learning

Clustering. Partition observations into homogeneous regions, e.g., to identify "communities" within large groups of people in social networks

Dimensionality Reduction. Transform an initial feature representation into a more concise representation, e.g., representing digital images

Typical Supervised Learning Pipeline

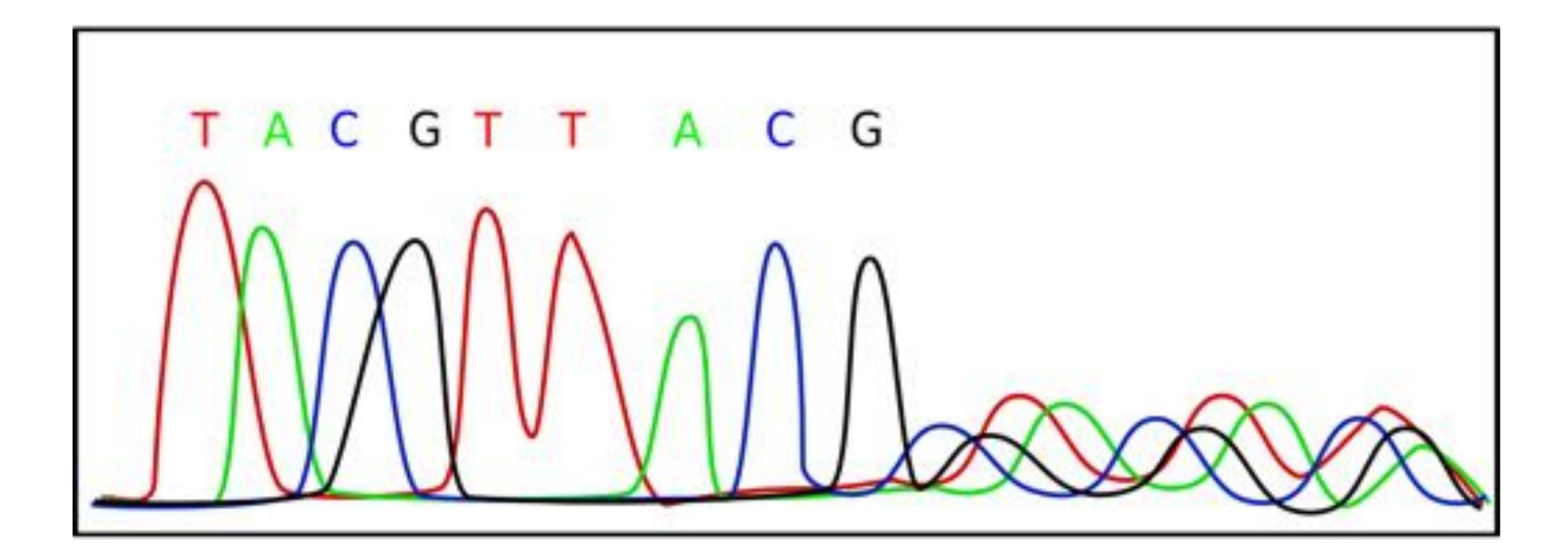
Obtain Raw Data

Raw data comes from many sources

Web hypertext

1 <! DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 2 "http://www.w3.org/TR/xhtml1/DTD/ xhtml1-transitional.dtd"> 3 4 <html xmlns="http://www.w3.org/1999/</p> xhtml"> <head> 5 <meta http-equiv="Content-6 Type content= "text/html; charset=us= 7 ascii" /> <script type="text/ 8 javascript"> 9 function reDo() {top. location.reload();] 10 if (navigator.appName == 'Netscape') {top.onresize = reDo;} 11 dom=document. getElementById; </script> 12 13 </head> 14 <body> 15 </body> 16 </html>

arriors lebox x	8
	12/8/14 + Reply -
to me (+)	
Ameet,	
We recently released our popular Holiday Hoops packs. The packs also include an exclus biggest games from January to March! A great gift for the holidays!!!	sive Warriors Holiday Card! These packs provide our
Holiday Hoops West Pack (Club 200 Sideline-\$303, Club 200 Baseline- \$260)	
Mon 1/5 vs Oklahoma City Thunder (© 7:30pm	
Wed 1/21 vs Houston Rockets @ 7:30pm	
Sun 3/8 vs LA Clippers @ 12:30pm	
Mon 3/16 vs LA Lakers @ 7:30pm	
Holiday Hoops East Pack (Club 200 Sideline-\$328, Club 200 Baseline- \$283)	
Fri 1/9 vs Cleveland @ 7:30pm	
Wed 1/14 vs Miami @ 7:30pm	
Tues 1/27 vs Chicago @ 7:30pm	
Sat 3/14 vs New York @ 7:30pm	
*Ability to exchange one game for a different date if needed.	
Flex Plan 6+	
If you are looking to attend 6 or more game games then you are able to pick any games t	from the remaing of the schedule.
If you would like to purchase one or have any questions/concerns give me a call.	



Genomic Data, e.g., SNPs

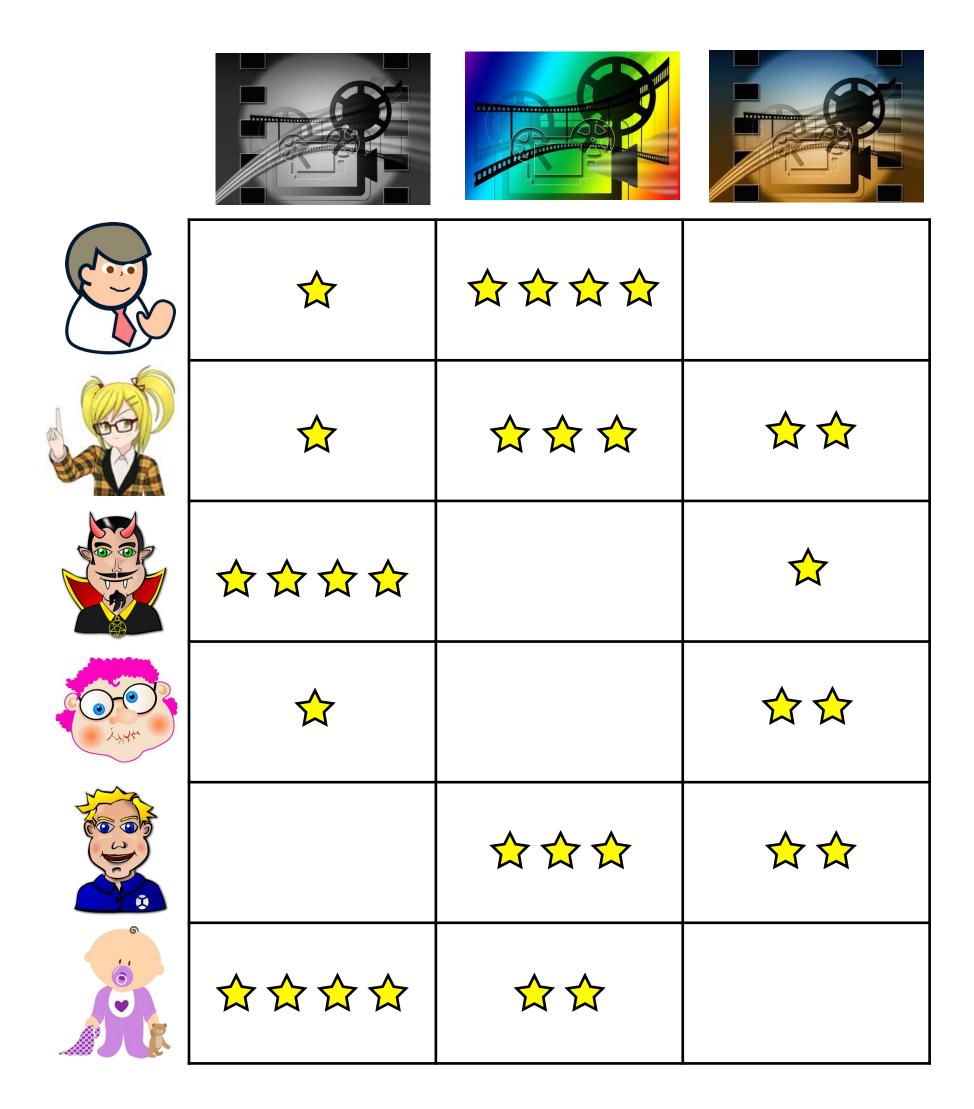
Images

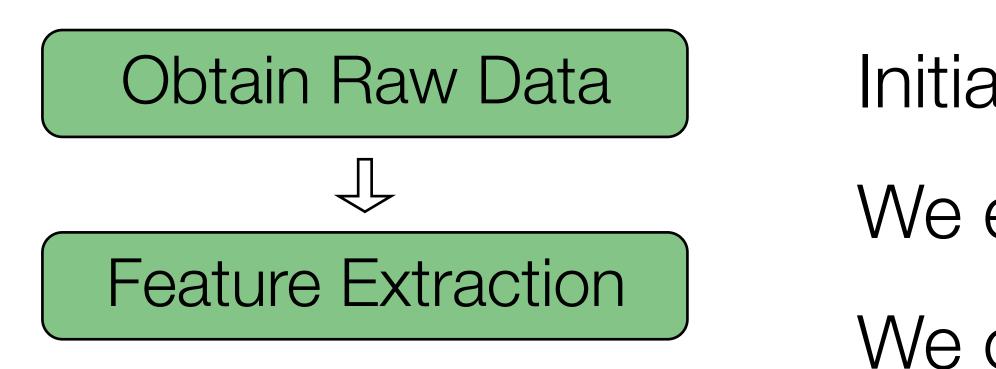
(Social) Networks / Graphs

Data Types



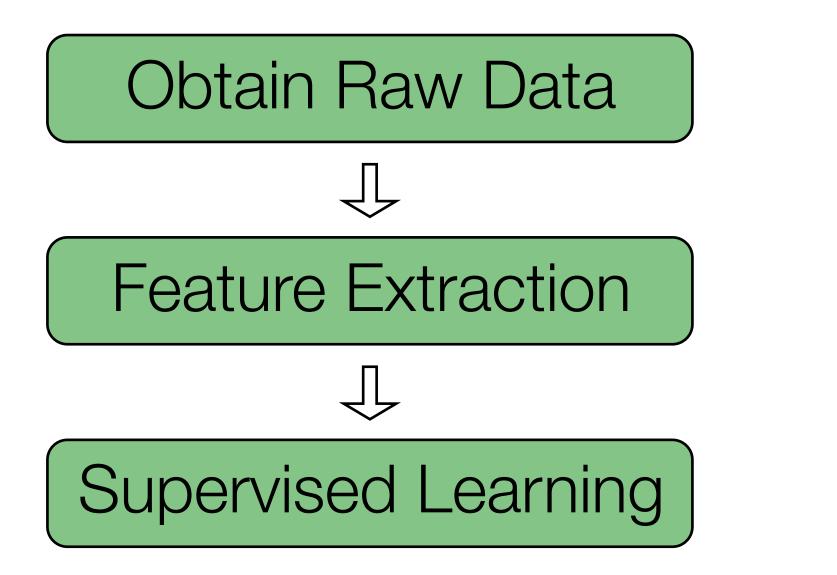
User Ratings



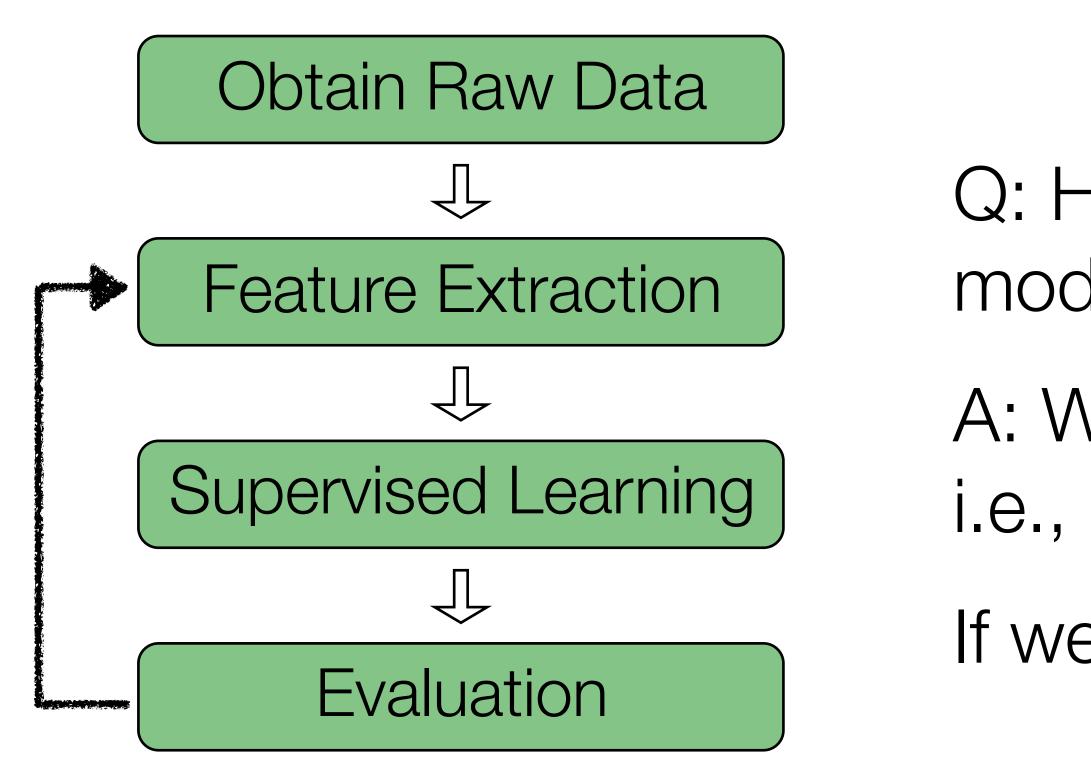


Success of entire pipeline often depends on choosing good descriptions of observations!!

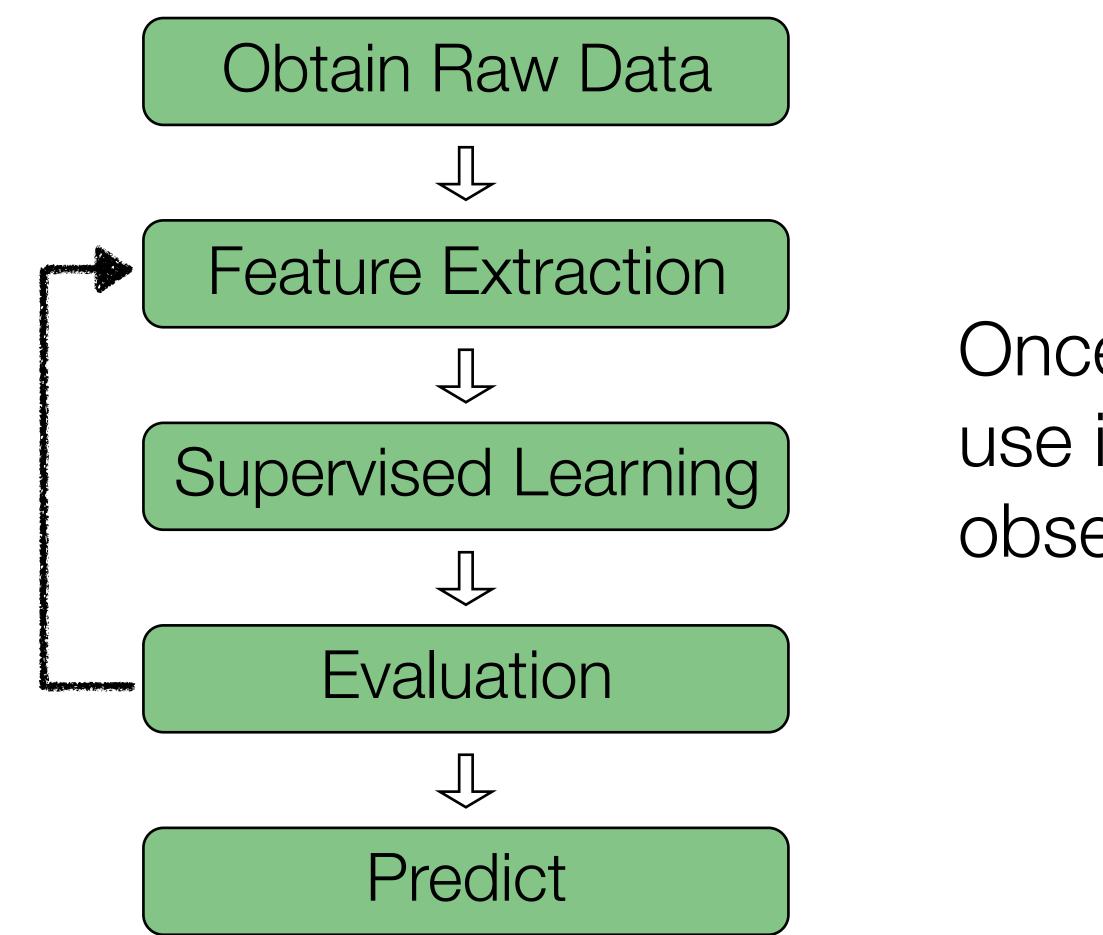
- Initial observations can be in arbitrary format We extract *features* to represent observations
- We can incorporate domain knowledge
- We typically want numeric features



Train a supervised model using labeled data, e.g., Classification or Regression model



- Q: How do we determine the quality of the model we've just trained?
- A: We can evaluate it on test / hold-out data, i.e., labeled data not used for training
- If we don't like the results, we iterate...



Once we're happy with our model, we can use it to make predictions on future observations, i.e., data without a known label

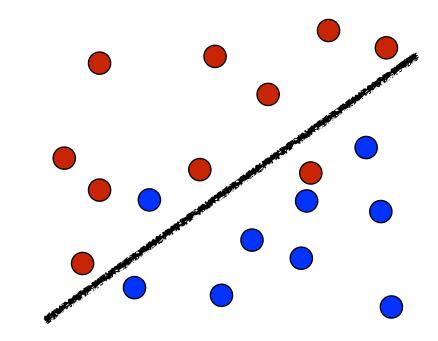
Sample Classification Pipeline

Classification

Goal: Learn a mapping from observations to discrete labels given a set of training examples (supervised learning)

Example: Spam Classification

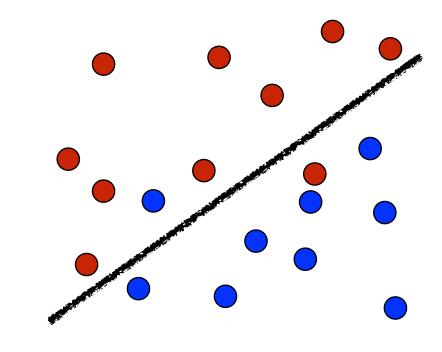
- Observations are emails
- a new email is spam or not-spam



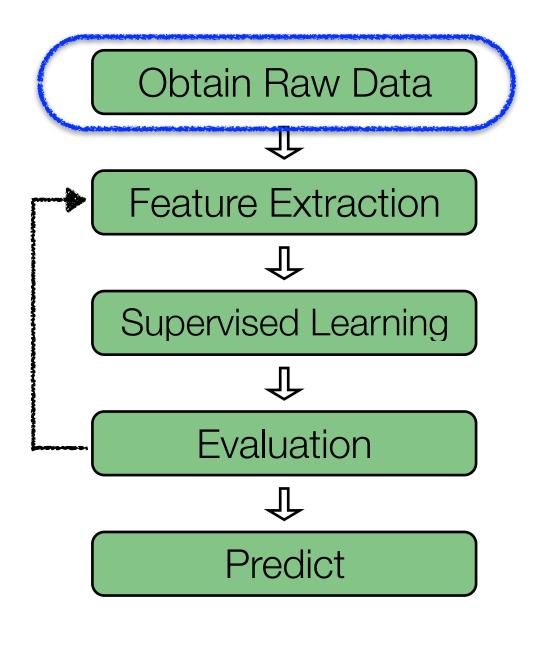
 Labels are {spam, not-spam} (Binary Classification) • Given a set of labeled emails, we want to predict whether

Other Examples

Fraud detection: User activity \rightarrow {fraud, not fraud} **Face detection**: Images \rightarrow set of people Link prediction: Users \rightarrow {suggest link, don't suggest link} **Clickthrough rate prediction**: User and ads \rightarrow {click, no click} Many others...



Raw data consists of a set of labeled training observations



E.g., Spam Classification

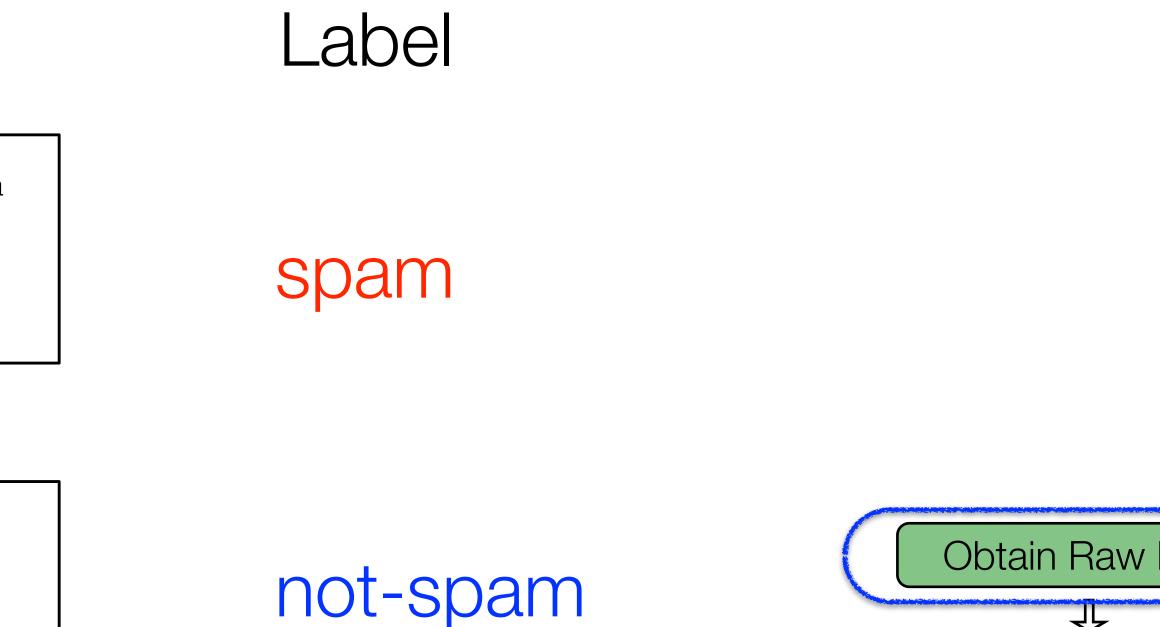
Observation

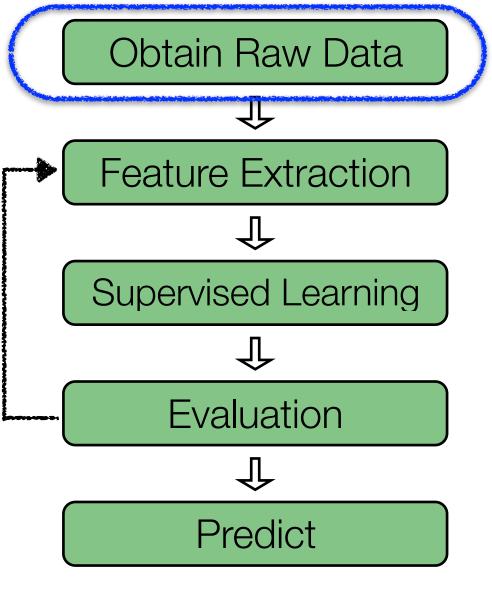
From: illegitimate@bad.com

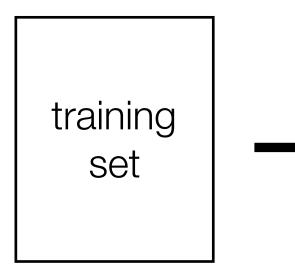
"Eliminate your debt by giving us your money..."

From: bob@good.com

"Hi, it's been a while! How are you? ..."

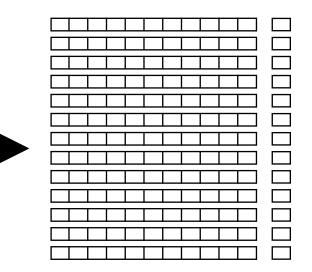


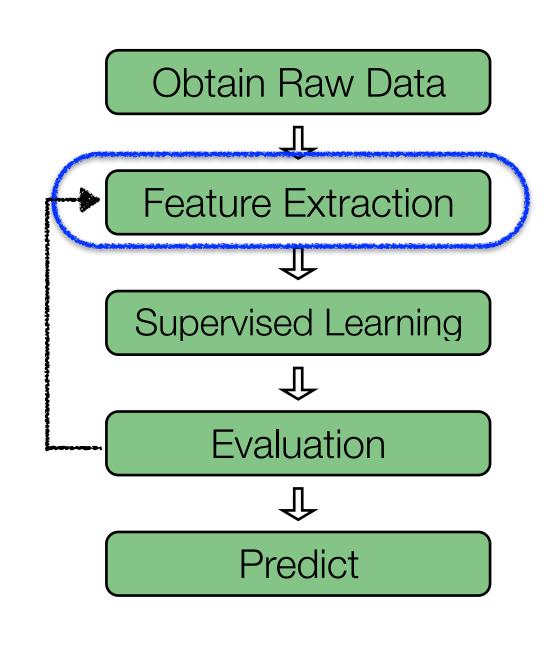




Feature extraction typically transforms each observations into a vector of real numbers (features)

Success or failure of a classifier often depends on choosing good descriptions of observations!!





E.g., "Bag of Words"

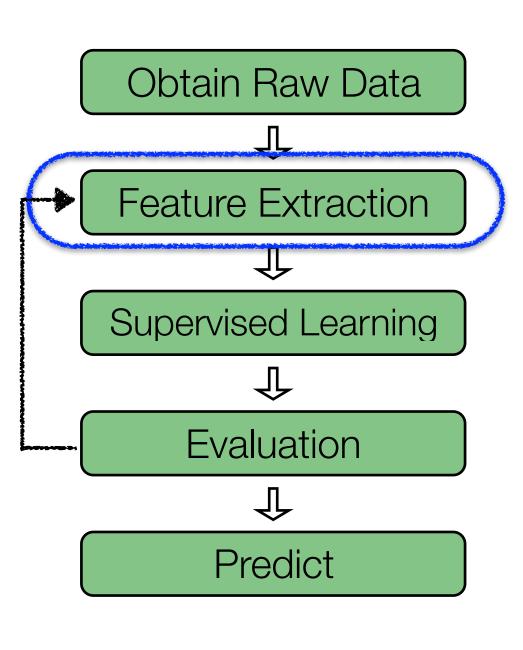
From: illegitimate@bad.com

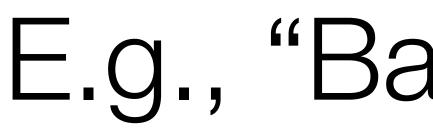
"Eliminate your debt by giving us your money..."

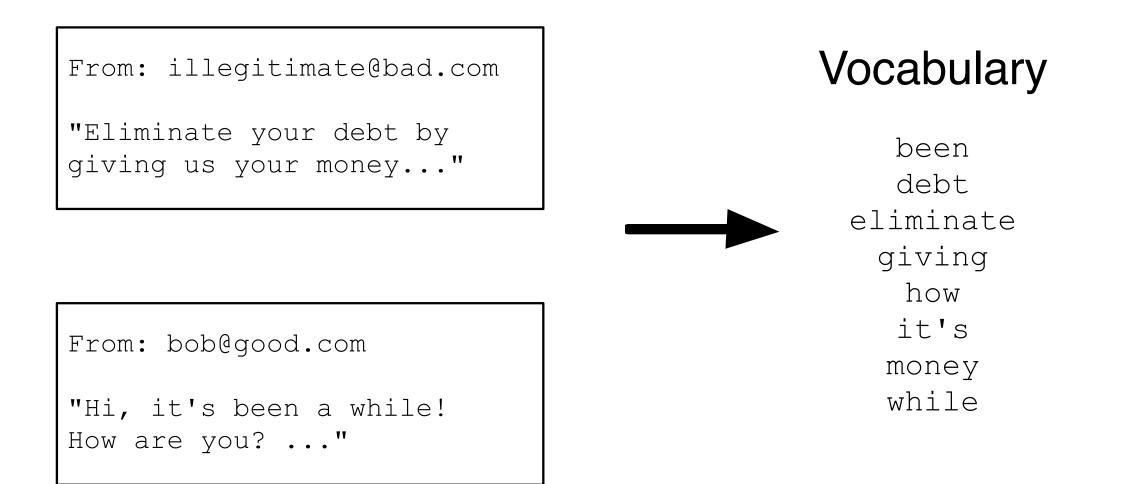
From: bob@good.com

"Hi, it's been a while! How are you? ..."

Observations are documents

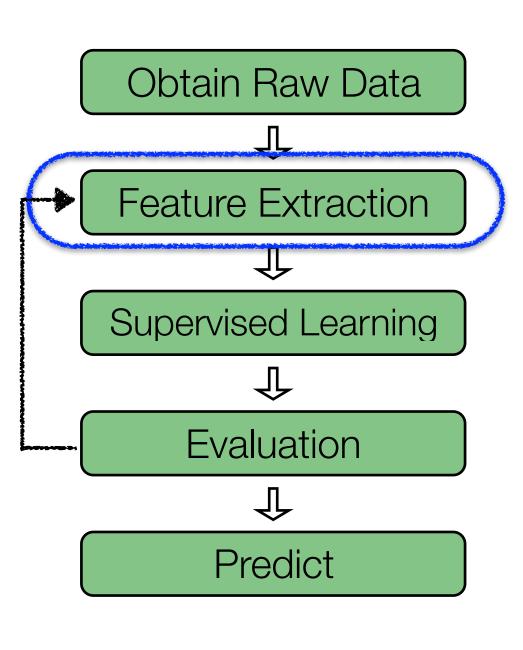


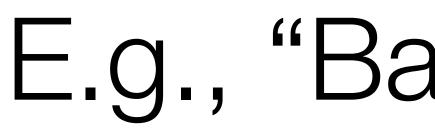


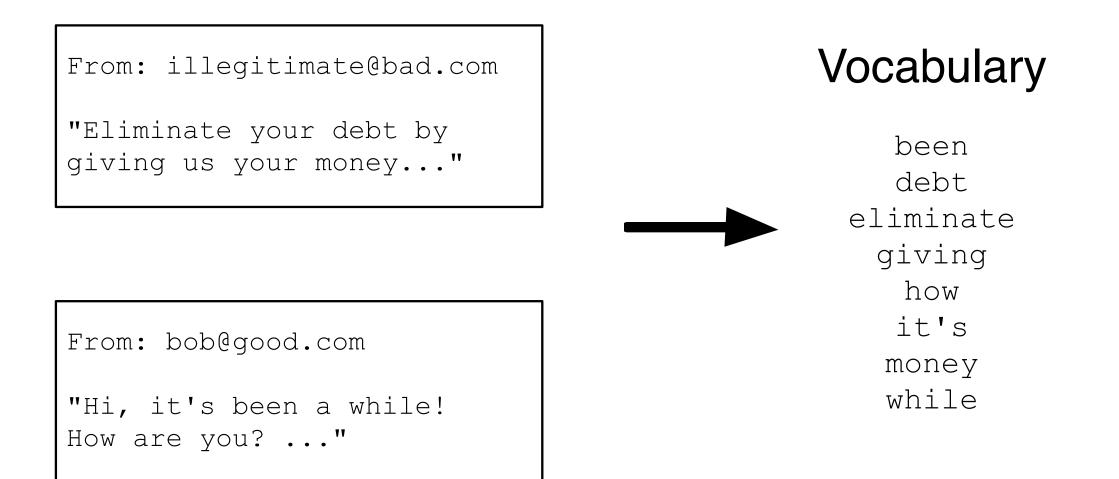


Observations are documents Build Vocabulary

E.g., "Bag of Words"

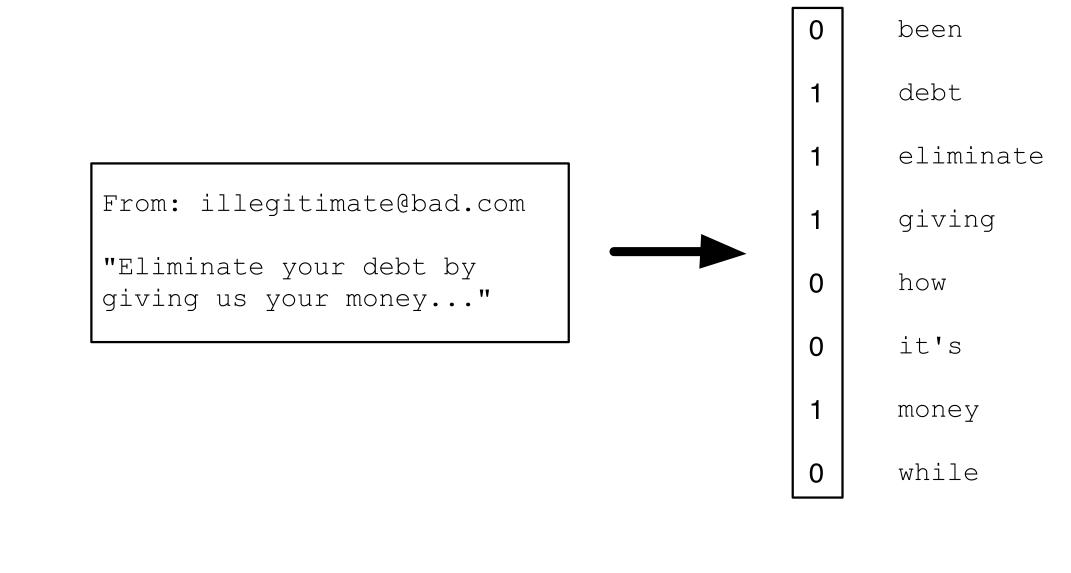


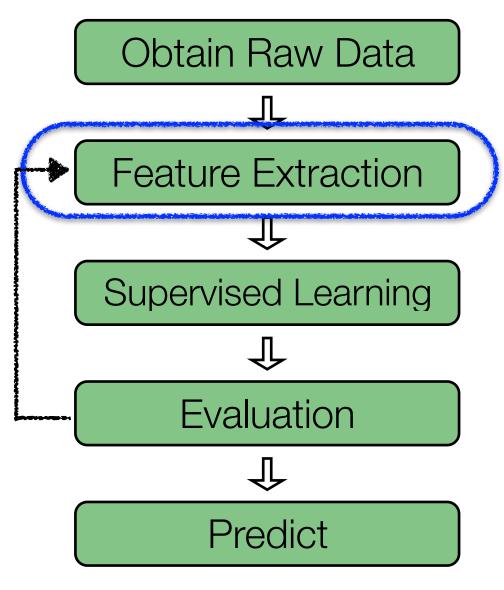


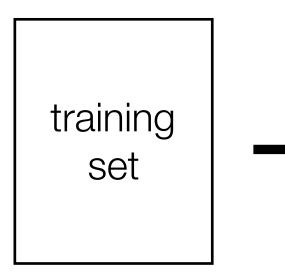


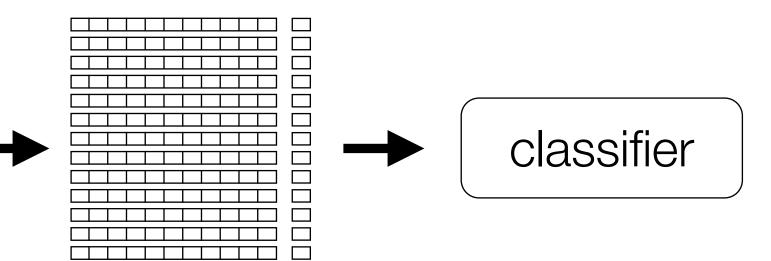
Observations are documents Build Vocabulary Derive feature vectors from Vocabulary

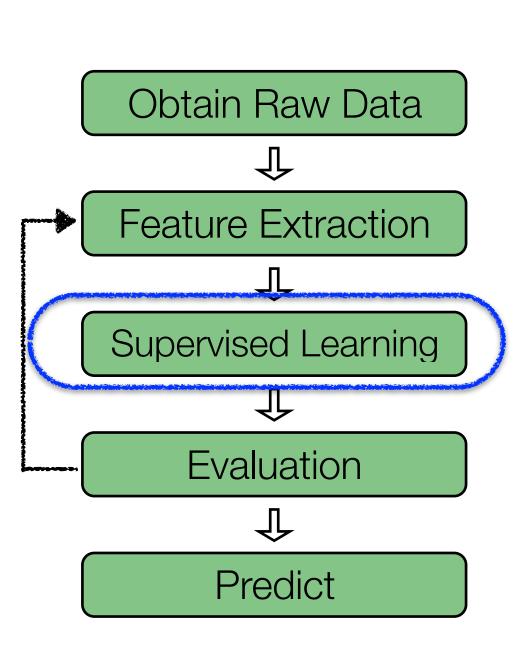
E.g., "Bag of Words"

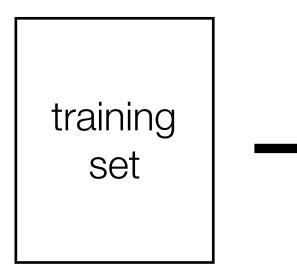








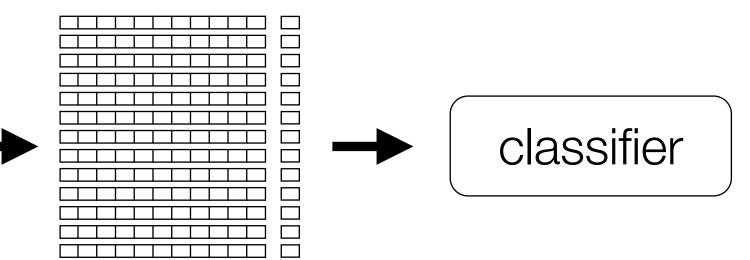


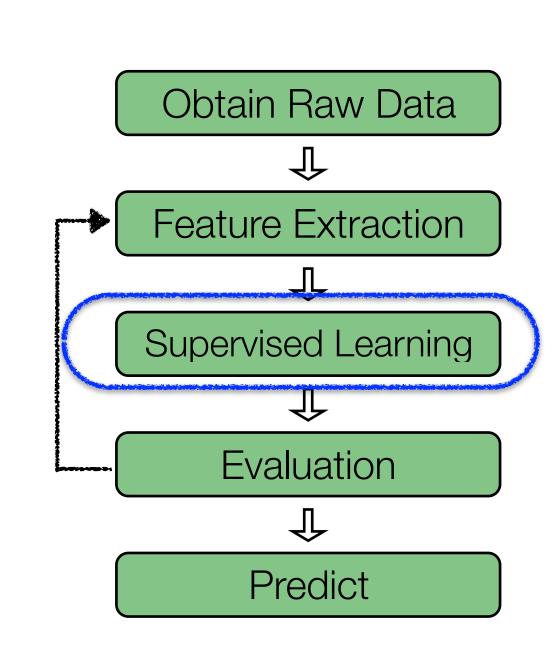


Supervised Learning: Train classifier using training data Common classifiers include Logistic Regression, SVMs, Decision

• Common classifiers include Logistic Trees, Random Forests, etc.

Training (especially at scale) often involves iterative computations, e.g., gradient descent

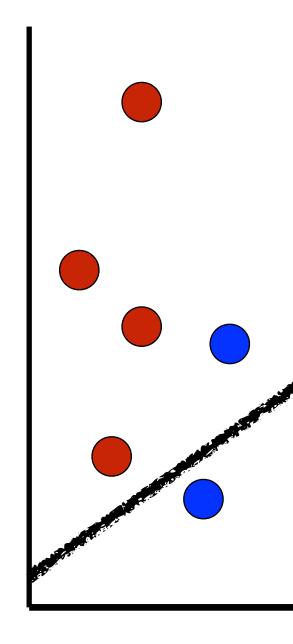


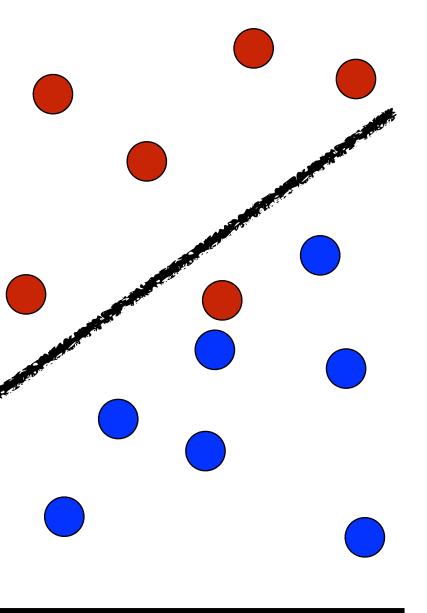


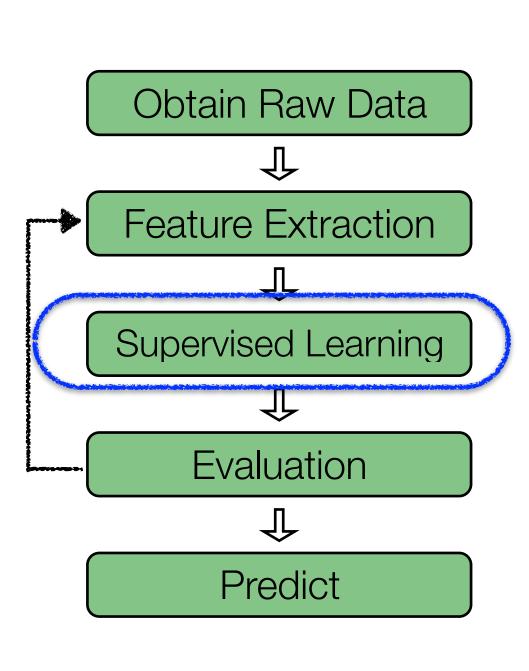
E.g., Logistic Regression

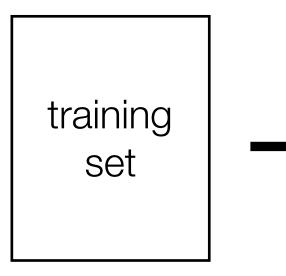
Goal: Find linear decision boundary

- Parameters to learn are feature weights and offset
- Nice probabilistic interpretation
- Covered in more detail later in course







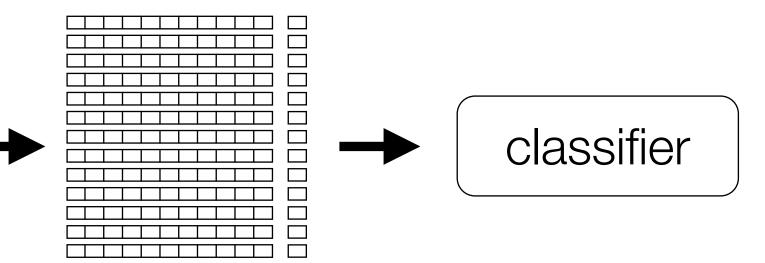


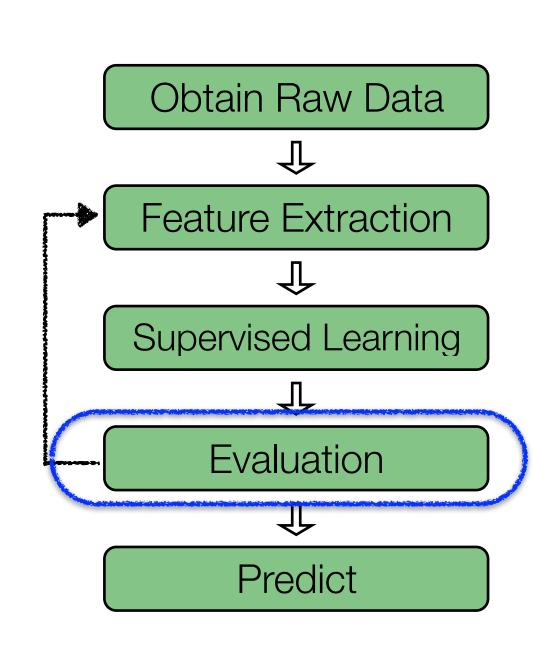
How can we evaluate the quality of our classifier? We want good predictions on unobserved data

- 'Generalization' ability

Accuracy on training data is overly optimistic since classifier has already learned from it

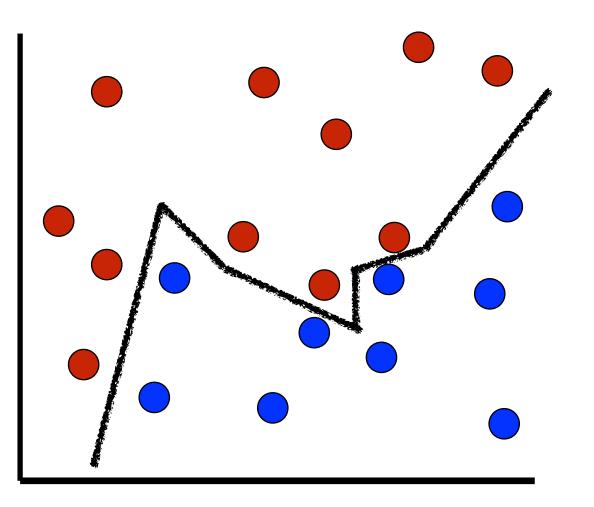
• We might be 'overfitting'



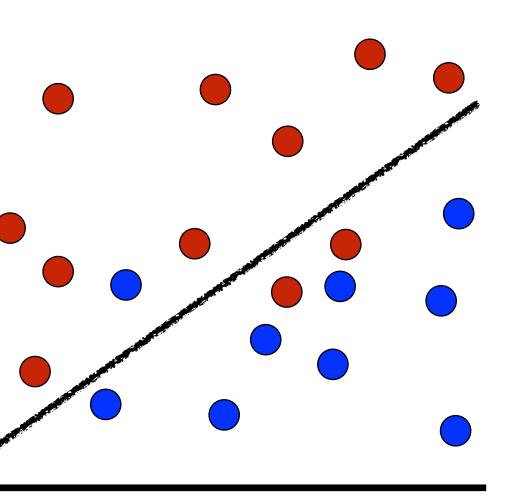


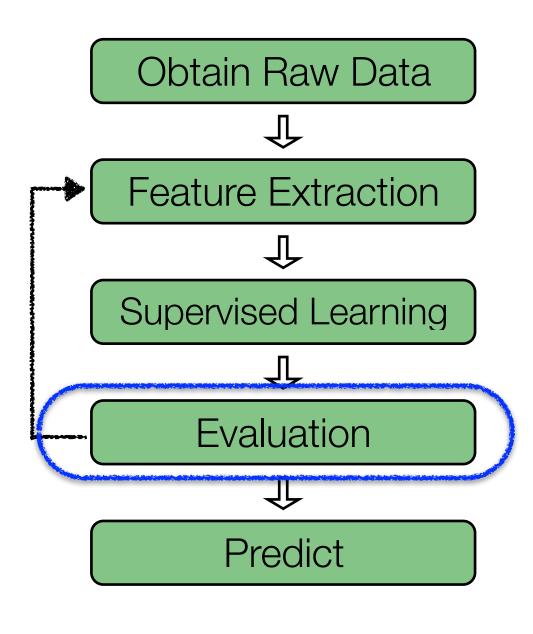
Overfitting and Generalization

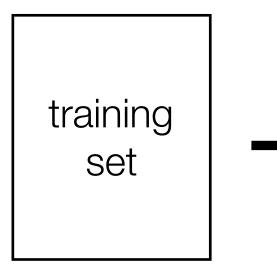
Left: perfectly fits training samples, but it is complex / overfitting Right: misclassifies a few points, but simple / generalizes Occam's razor



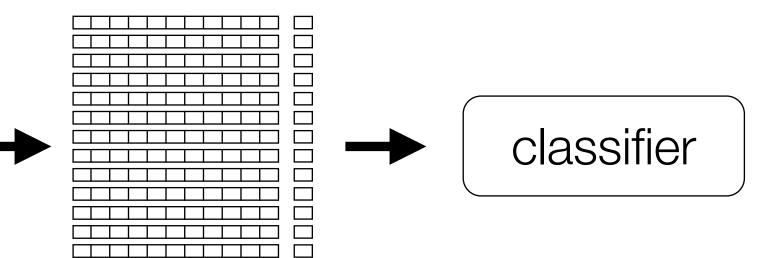
- Fitting training data does not guarantee generalization, e.g., lookup table

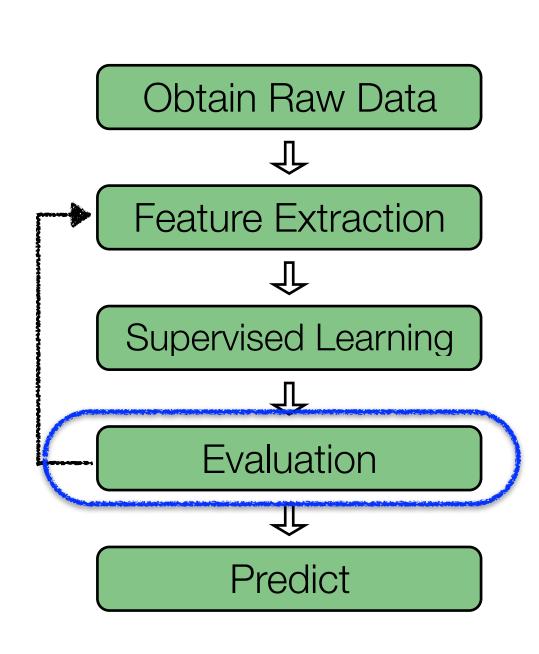


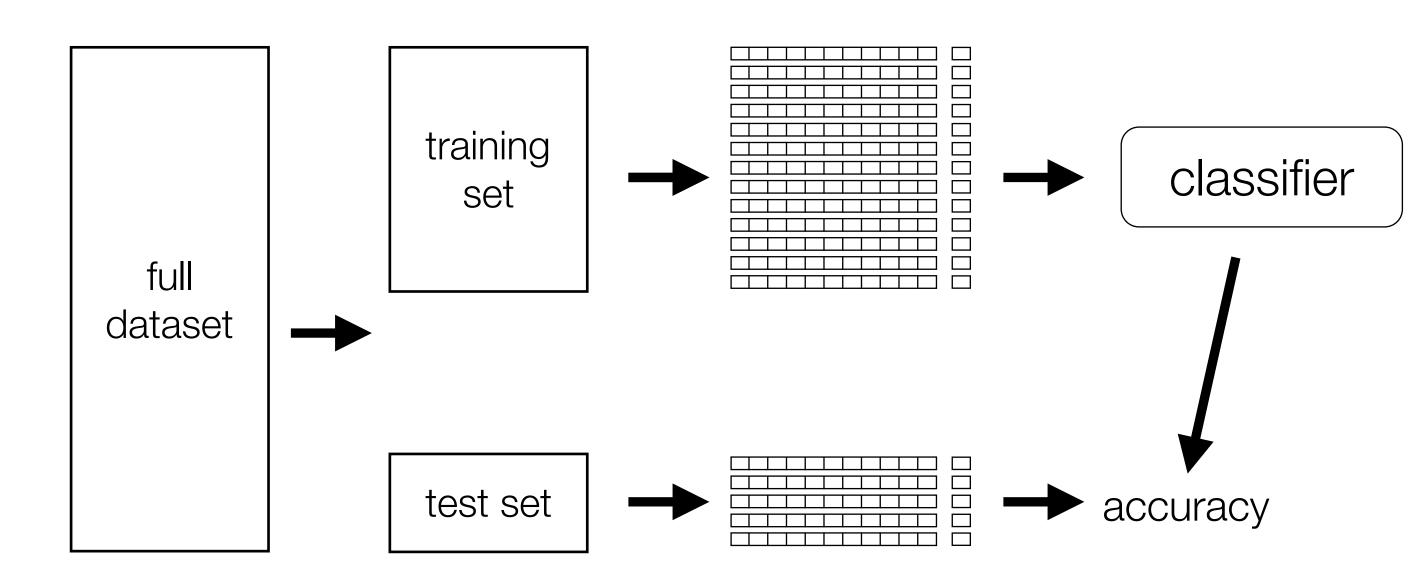




How can we evaluate the quality of our classifier? Idea: Create test set to simulate unobserved data



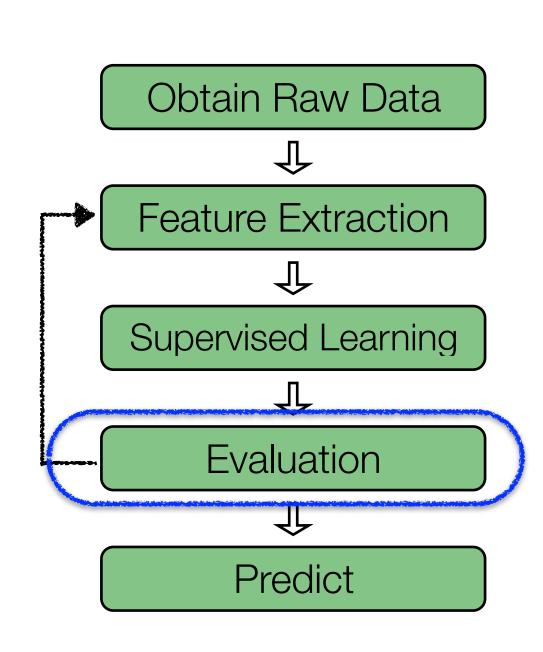


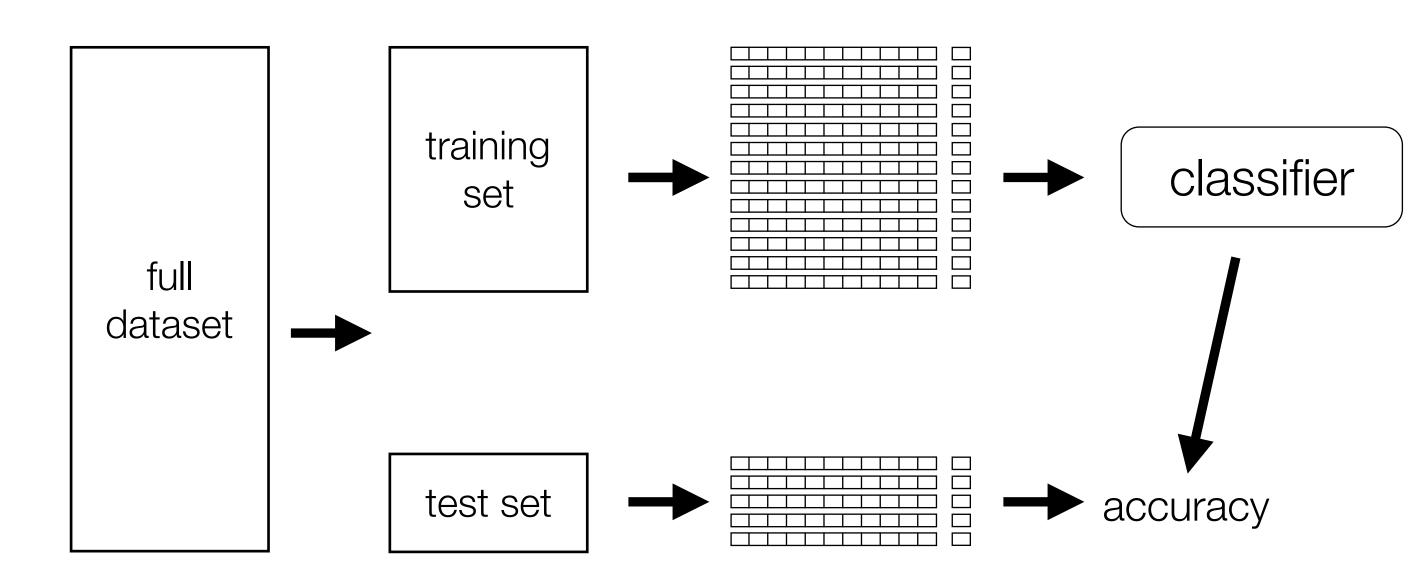


Evaluation: Split dataset into training / testing datasets

- Train on training set (don't expose test set to classifier)
- Make predictions on test set (ignoring test labels)
- Compare test predictions with underlying test labels

ning / testing datasets ose test set to classifier) gnoring test labels) underlying test labels

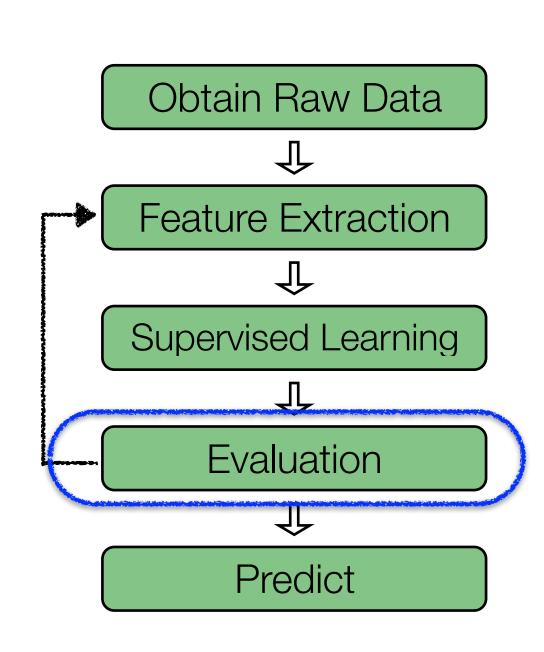


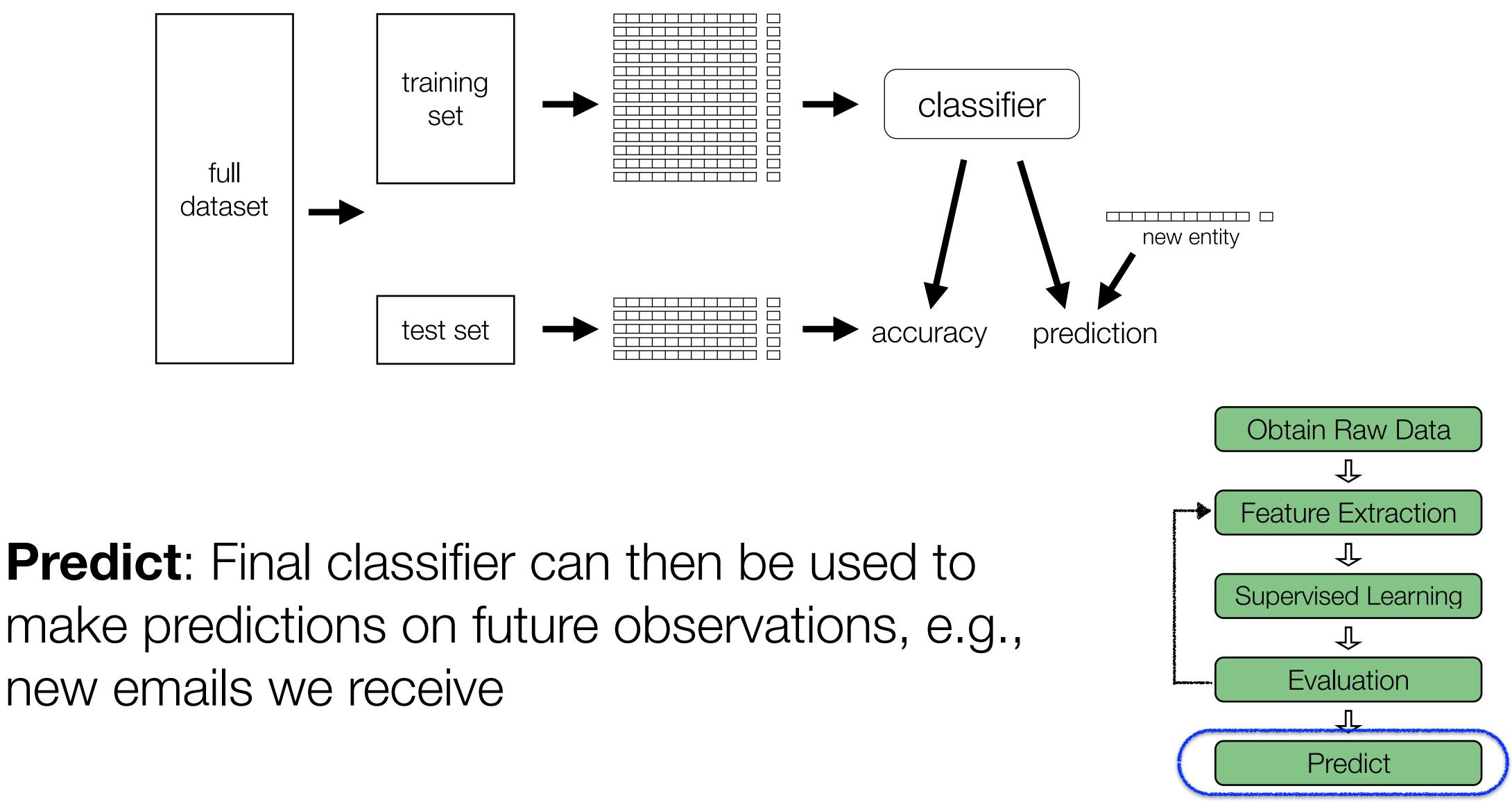


Evaluation: Split dataset into training / testing datasets

- Various ways to compare predicted and true labels
- Evaluation criterion is called a 'loss' function
- Accuracy (or 0-1 loss) is common for classification

ning / testing datasets icted and true labels loss' function non for classification





new emails we receive

Linear Algebra Review

A matrix is a 2-dimensional array

Matrices

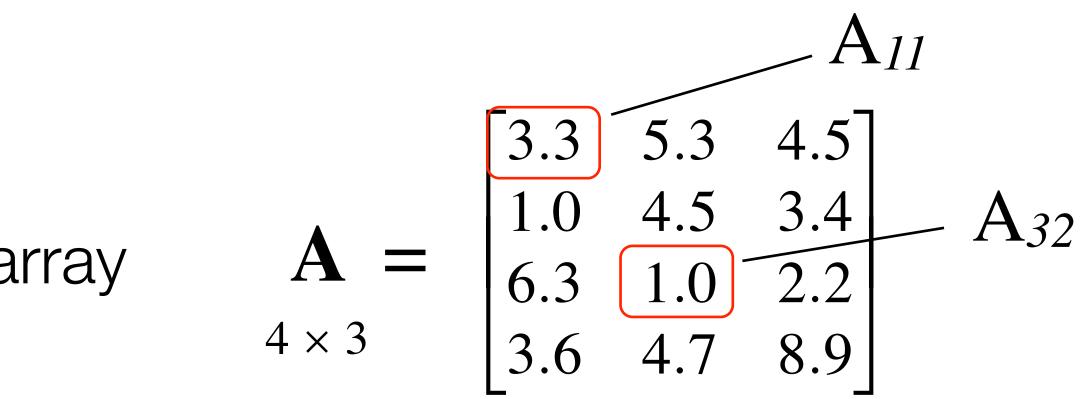
 $\begin{bmatrix} 3.3 & 5.3 & 4.5 \\ 1.0 & 4.5 & 3.4 \\ 6.3 & 1.0 & 2.2 \\ 3.6 & 4.7 & 8.9 \end{bmatrix}$

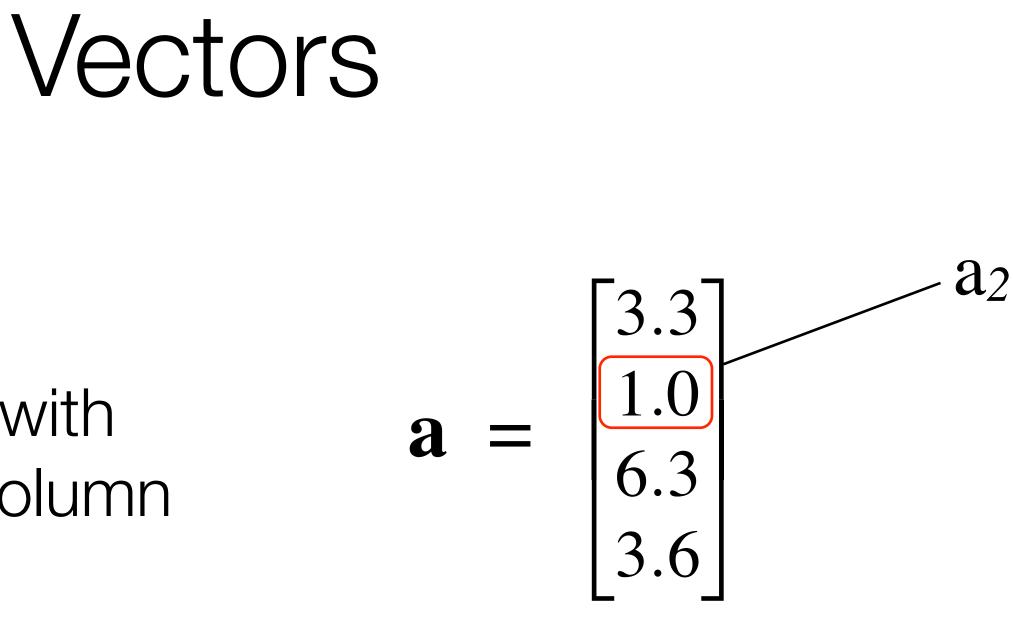
Matrices

A matrix is a 2-dimensional array

Notation:

- Matrices are denoted by bold uppercase letters A_{ij} denotes the entry in *i*th row and *j*th column
- If A is $n \times m$, it has n rows an m columns
- If **A** is $n \times m$, then **A** $\in \mathbb{R}^{n \times m}$

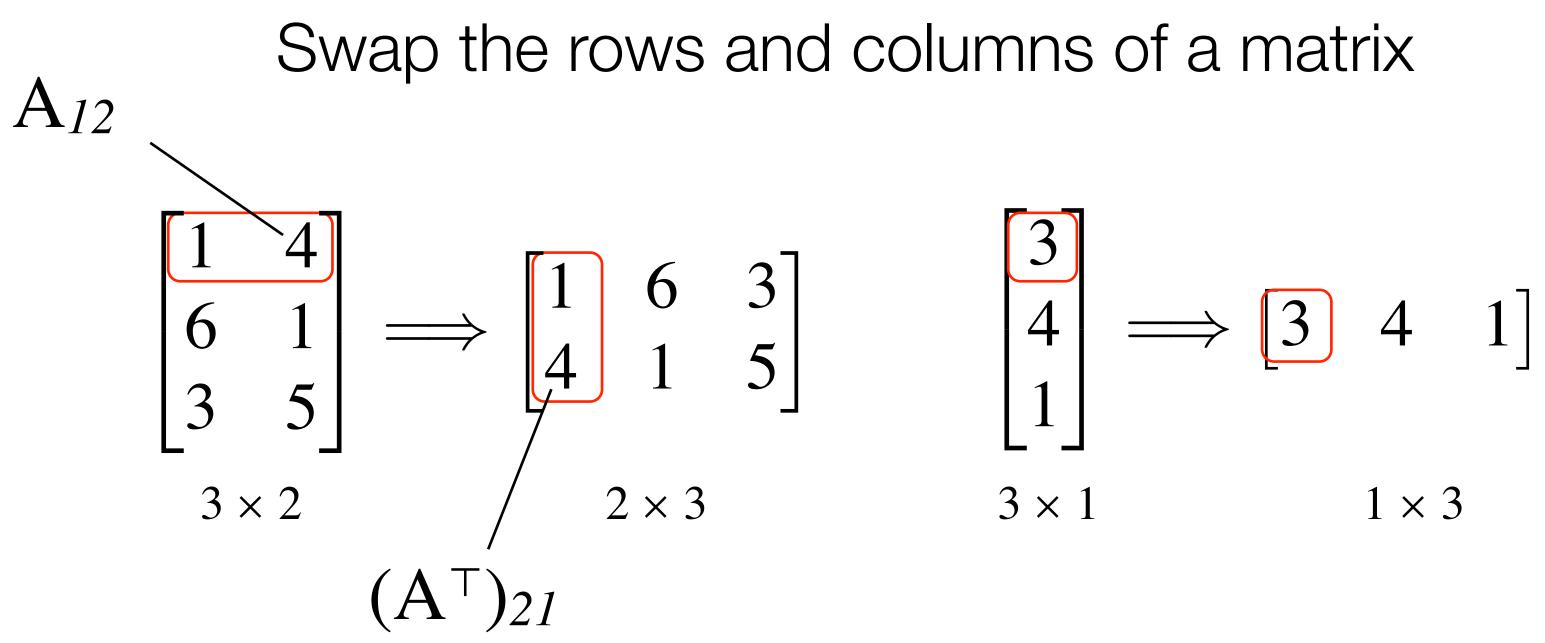




A vector is a matrix with many rows and one column

Notation:

- Vectors are denoted by bold lowercase letters • a_i denotes the *i*th entry
- If **a** is *m* dimensional, then $\mathbf{a} \in \mathbb{R}^m$



Properties of matrix transposes:

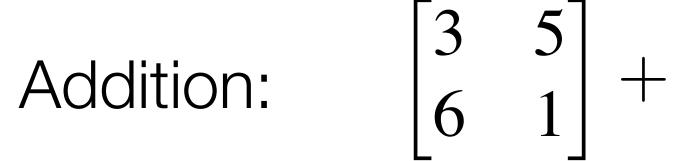
•
$$A_{ij} = (A^{\top})_{ji}$$

• If A is $n \times m$, then A^{\top} is $m \times n$

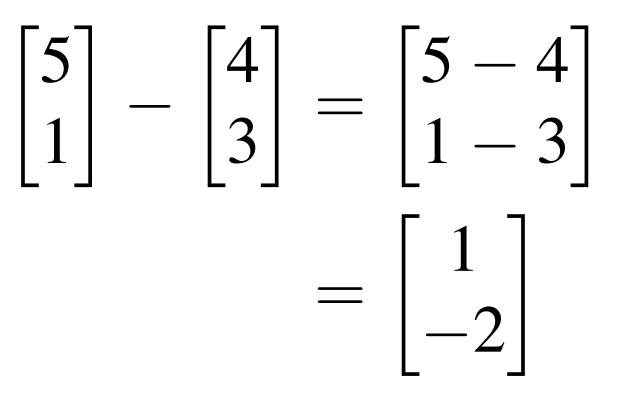
Transpose

Addition and Subtraction

These are element-wise operations



$$\begin{bmatrix} 4 & 5 \\ 8 & 12 \end{bmatrix} = \begin{bmatrix} 3+4 & 5+5 \\ 6+8 & 1+12 \end{bmatrix}$$
$$= \begin{bmatrix} 7 & 10 \\ 14 & 13 \end{bmatrix}$$

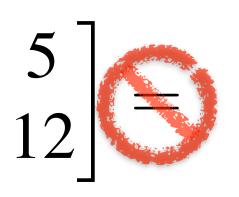


Addition and Subtraction

The matrices must have the same dimensions

5 $\begin{vmatrix} 3 & 5 & 4 \\ 6 & 1 & 2 \end{vmatrix} + \begin{vmatrix} 4 & 5 \\ 8 & 12 \end{vmatrix}$ $\begin{bmatrix} 3 & 5 & 4 \\ 6 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 4 & 5 \\ 8 & 12 \end{bmatrix}$

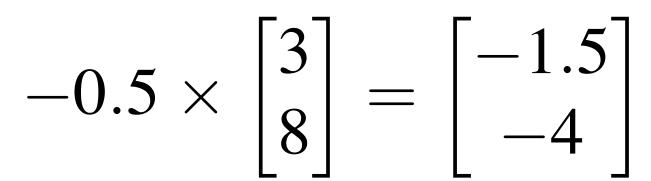
$$\begin{bmatrix} 4\\3 \end{bmatrix} = \begin{bmatrix} 1\\-2 \end{bmatrix}$$
$$\begin{bmatrix} 1\\-2 \end{bmatrix} = \begin{bmatrix} 7 & 10 & 5\\14 & 13 & 11 \end{bmatrix}$$



Matrix Scalar Multiplication

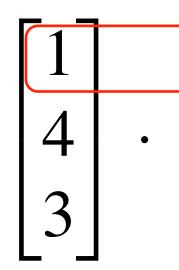
We multiply each matrix element by the scalar value

 $3 \times \begin{vmatrix} 3 & 5 & 4 \\ 6 & 1 & 2 \end{vmatrix}$



$$= \begin{bmatrix} 9 & 15 & 12 \\ 18 & 3 & 6 \end{bmatrix}$$

Scalar Product



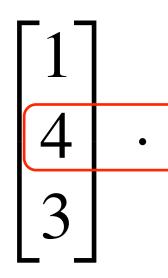
1×4

A function that maps two vectors to a scalar

$$\begin{bmatrix} 4 \\ 2 \\ -7 \end{bmatrix} = -9$$

Performs pairwise multiplication of vector elements

Scalar Product



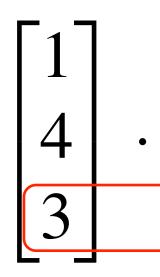
$1 \times 4 + 4 \times 2$

Performs pairwise multiplication of vector elements

A function that maps two vectors to a scalar

$$\begin{bmatrix} 4 \\ 2 \\ -7 \end{bmatrix} = -9$$

Scalar Product



$1 \times 4 + 4 \times 2 +$

Performs pairwise multiplication of vector elements

The two vectors must be the same dimension

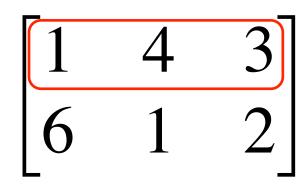
Also known as *dot* product or *inner* product

A function that maps two vectors to a scalar

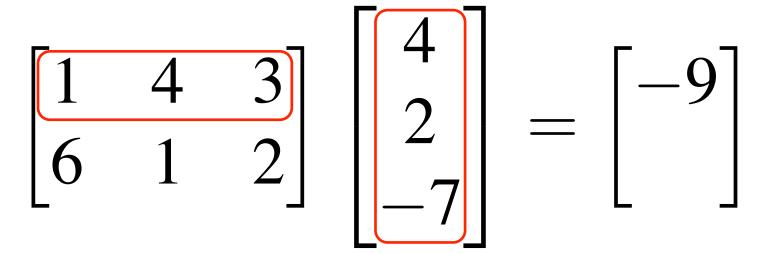
$$\begin{bmatrix} 4 \\ 2 \\ -7 \end{bmatrix} = -9$$

$$+3 \times (-7) = -9$$

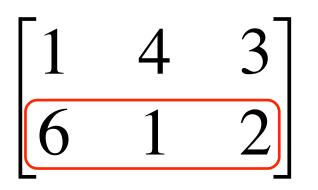
Involves repeated scalar products



 $1 \times 4 + 4 \times 2 + 3 \times (-7) = -9$



Involves repeated scalar products

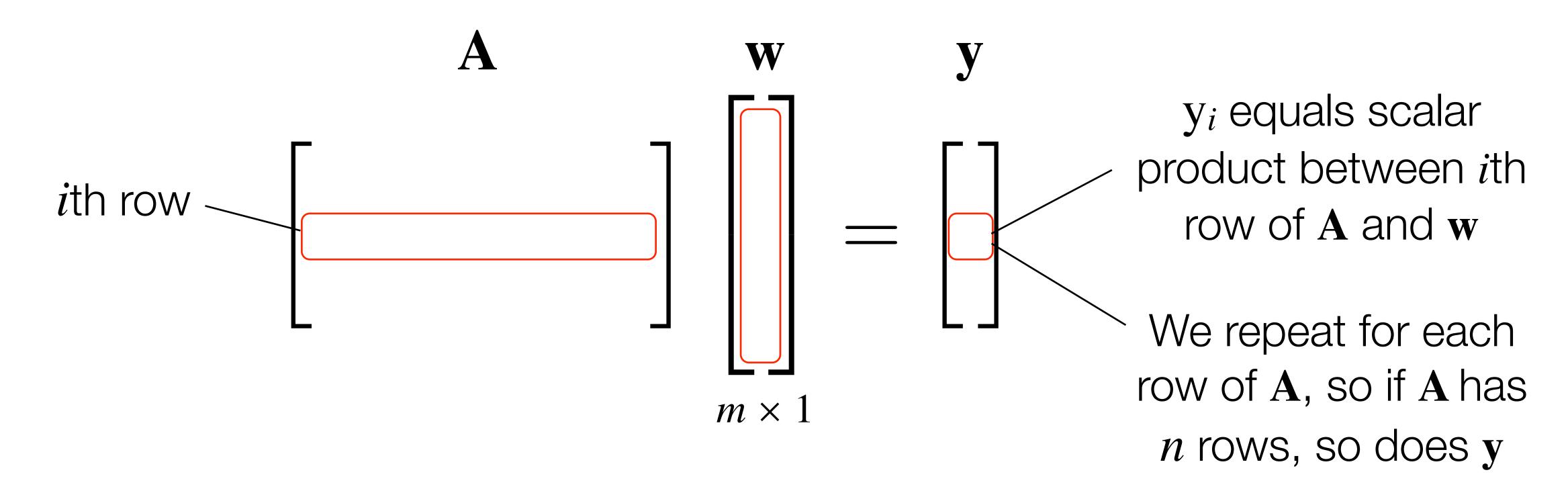


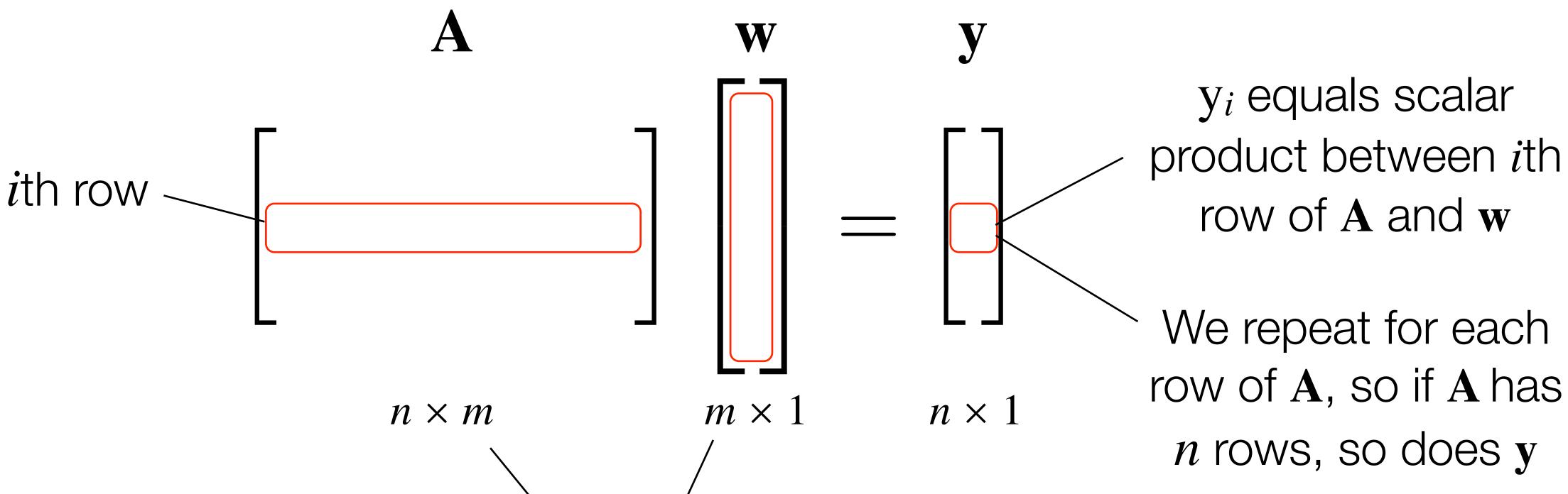
 $1 \times 4 + 4 \times 2$ $6 \times 4 + 1 \times 2$

$$\begin{bmatrix} 4 \\ 2 \\ -7 \end{bmatrix} = \begin{bmatrix} -9 \\ 12 \end{bmatrix}$$

$$+3 \times (-7) = -9$$

 $2 + 2 \times (-7) = 12$

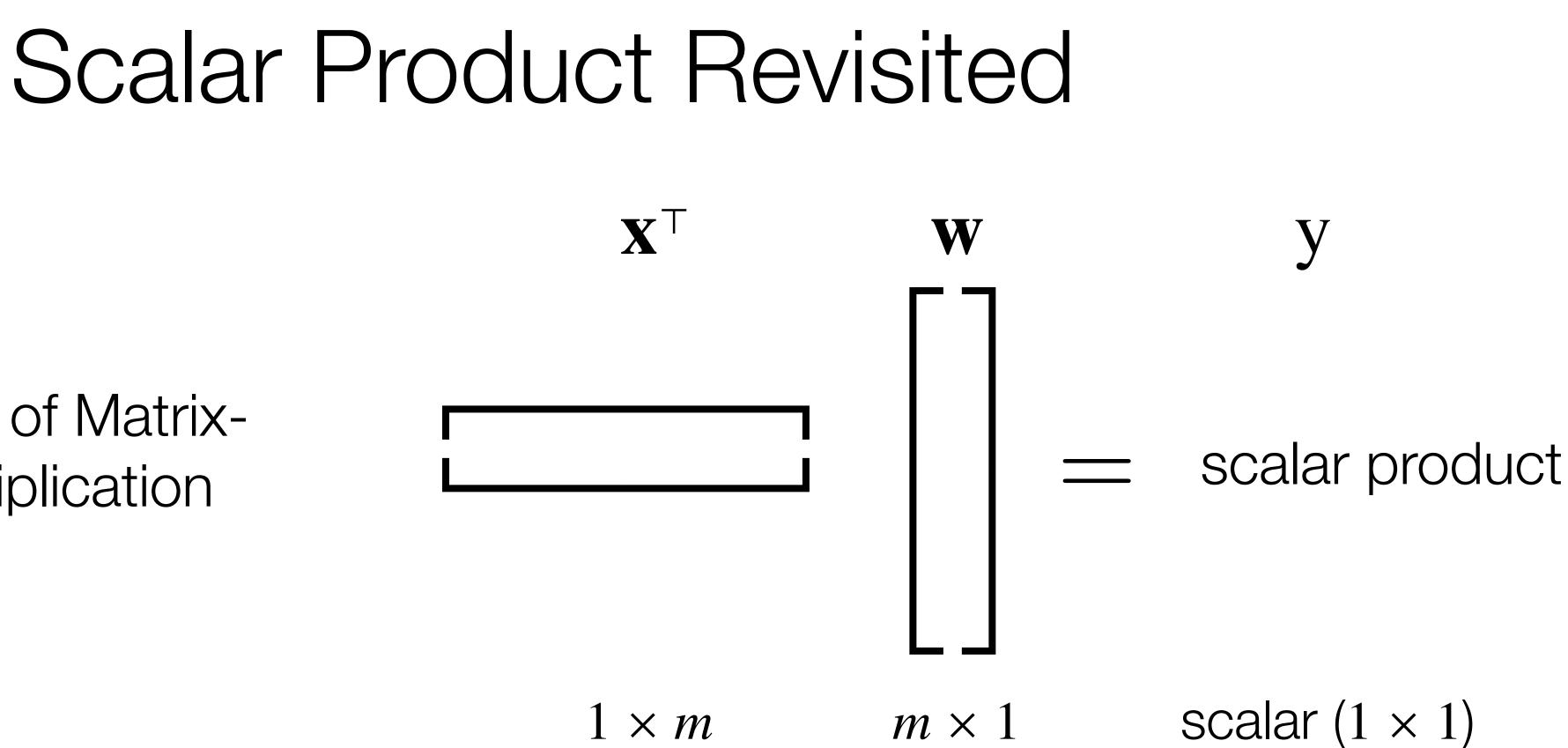




To perform inner products, # columns in **A** must equal # rows of **w**

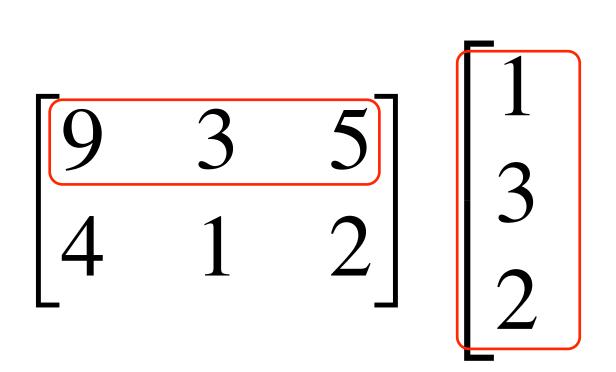
Special case of Matrix-Vector Multiplication

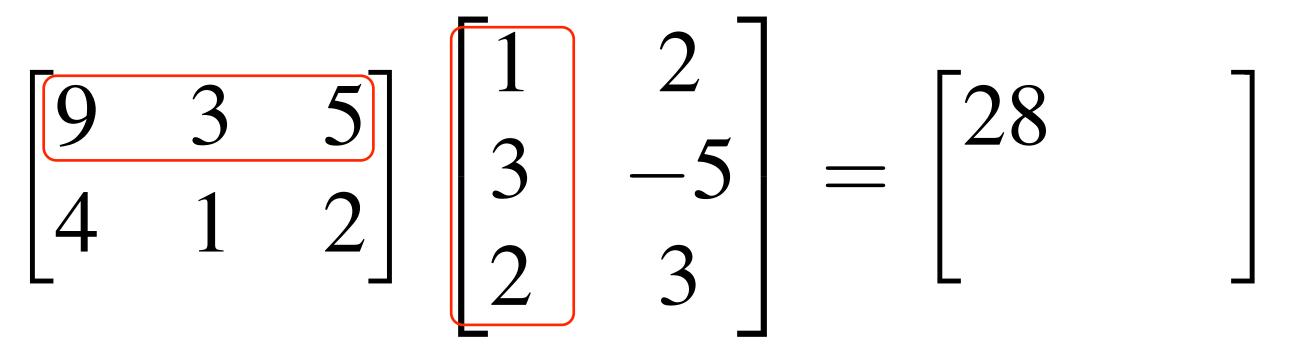
Vectors assumed to be in column form (many rows, one column) Transposed vectors are row vectors Common notation for scalar product: $\mathbf{x}^{\top}\mathbf{w}$



Matrix-Matrix Multiplication

Also involves several scalar products

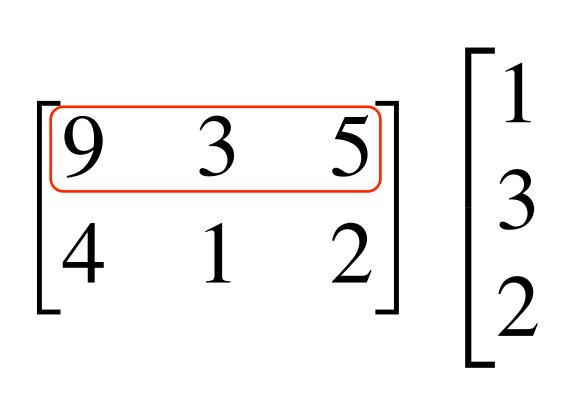




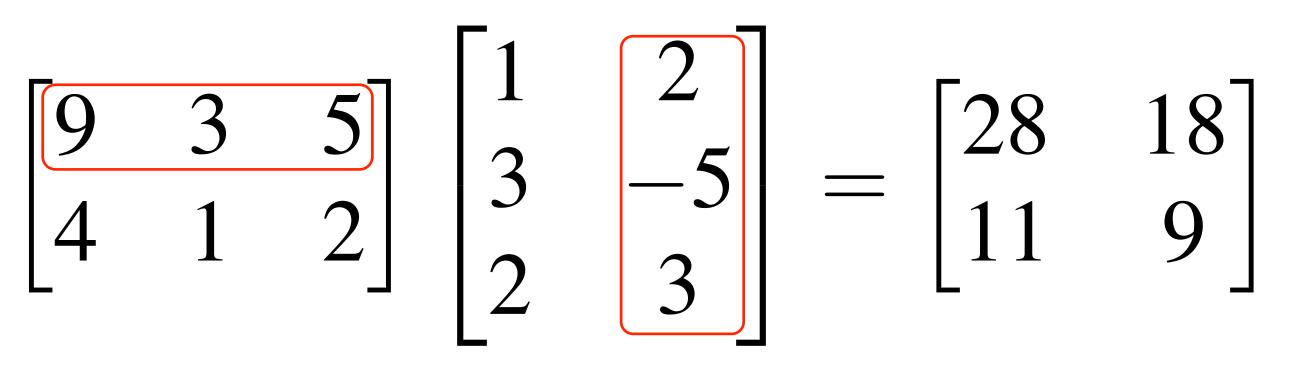
 $9 \times 1 + 3 \times 3 + 5 \times 2 = 28$

Matrix-Matrix Multiplication

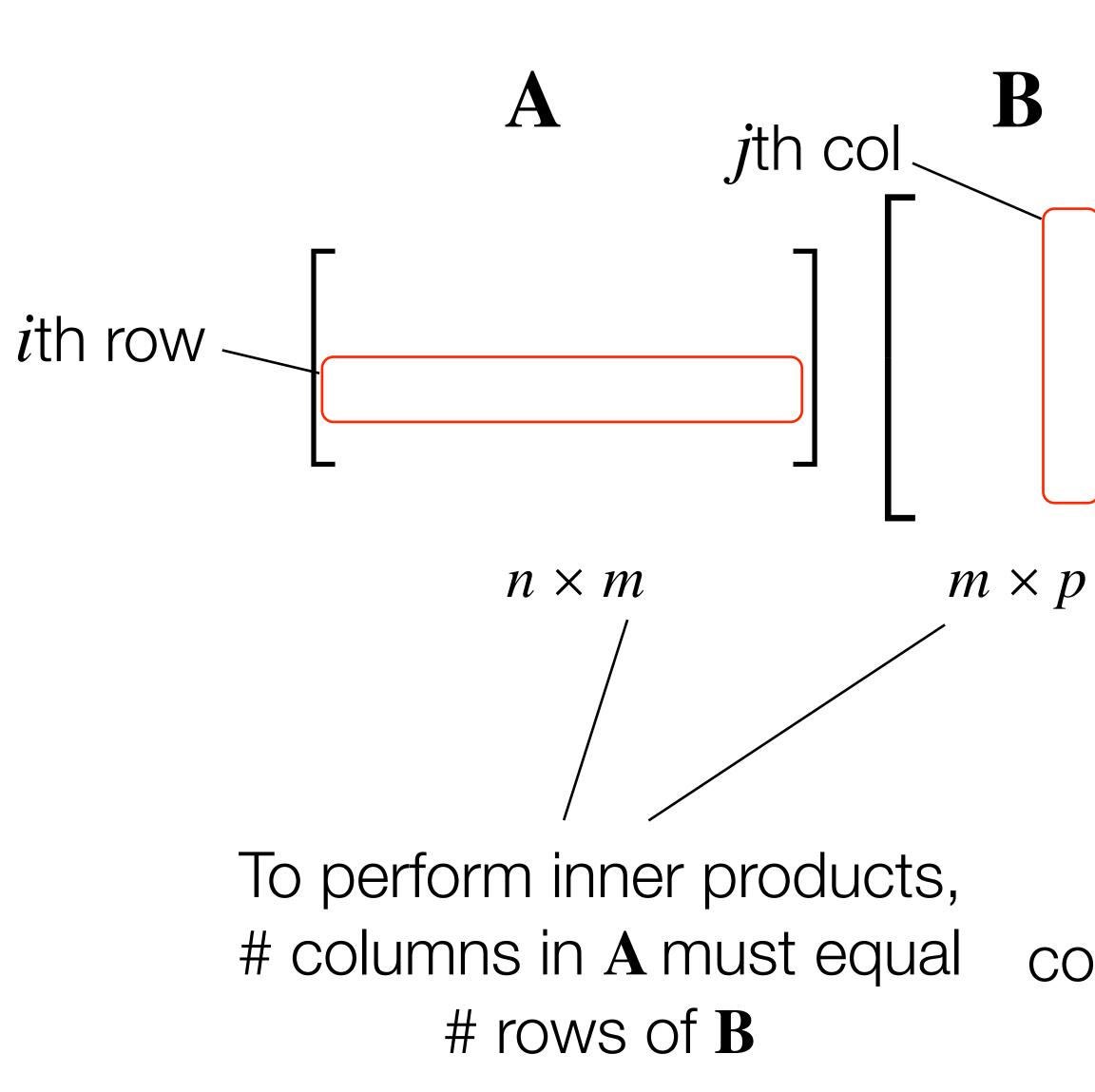
Also involves several scalar products



 $9 \times 1 + 3 \times 3 + 5 \times 2 = 28$ $9 \times 2 + 3 \times (-5) + 5 \times 3 = 18$



Matrix-Matrix Multiplication



C_{ij} is scalar product of *i*th row of **A** and *j*th column of **B**

We repeat for each row of **A**, so if **A** has *n* rows, so does **C**

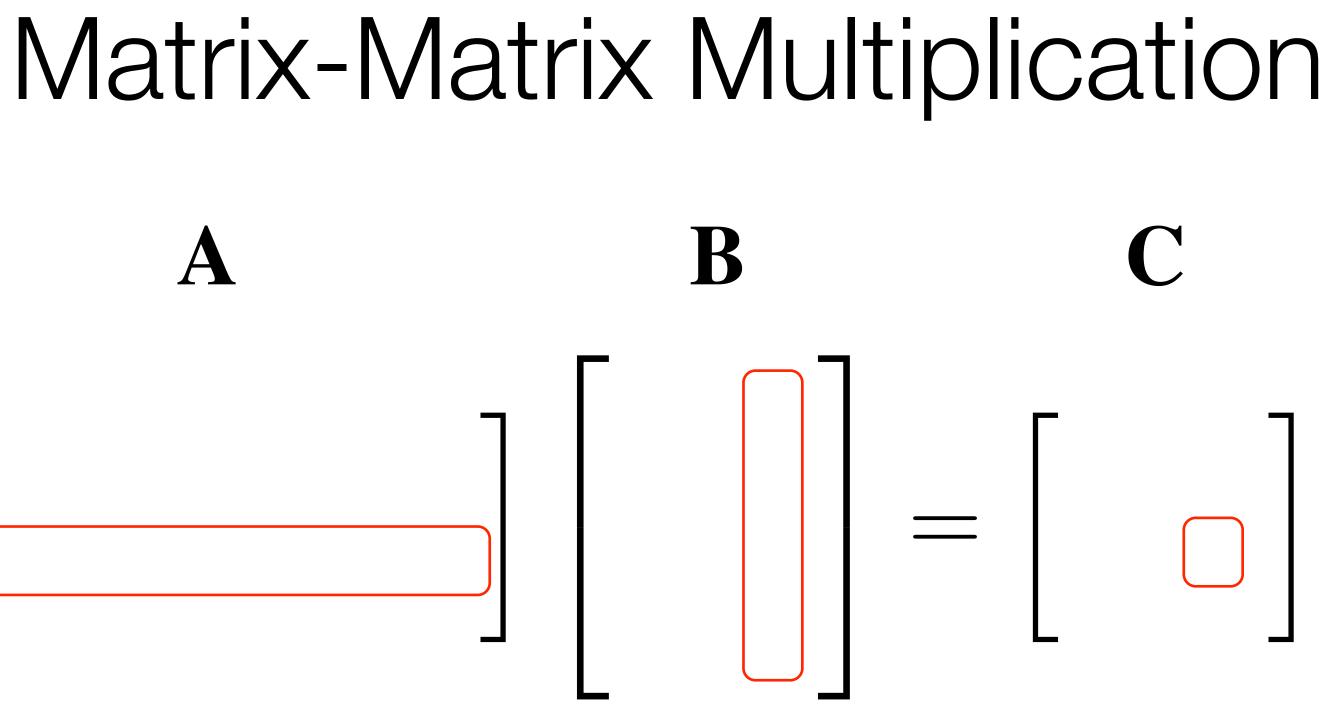
We repeat for each column of **B**, so if **B** has *p* columns, so does **C**

C

 $n \times p$

 $n \times m$

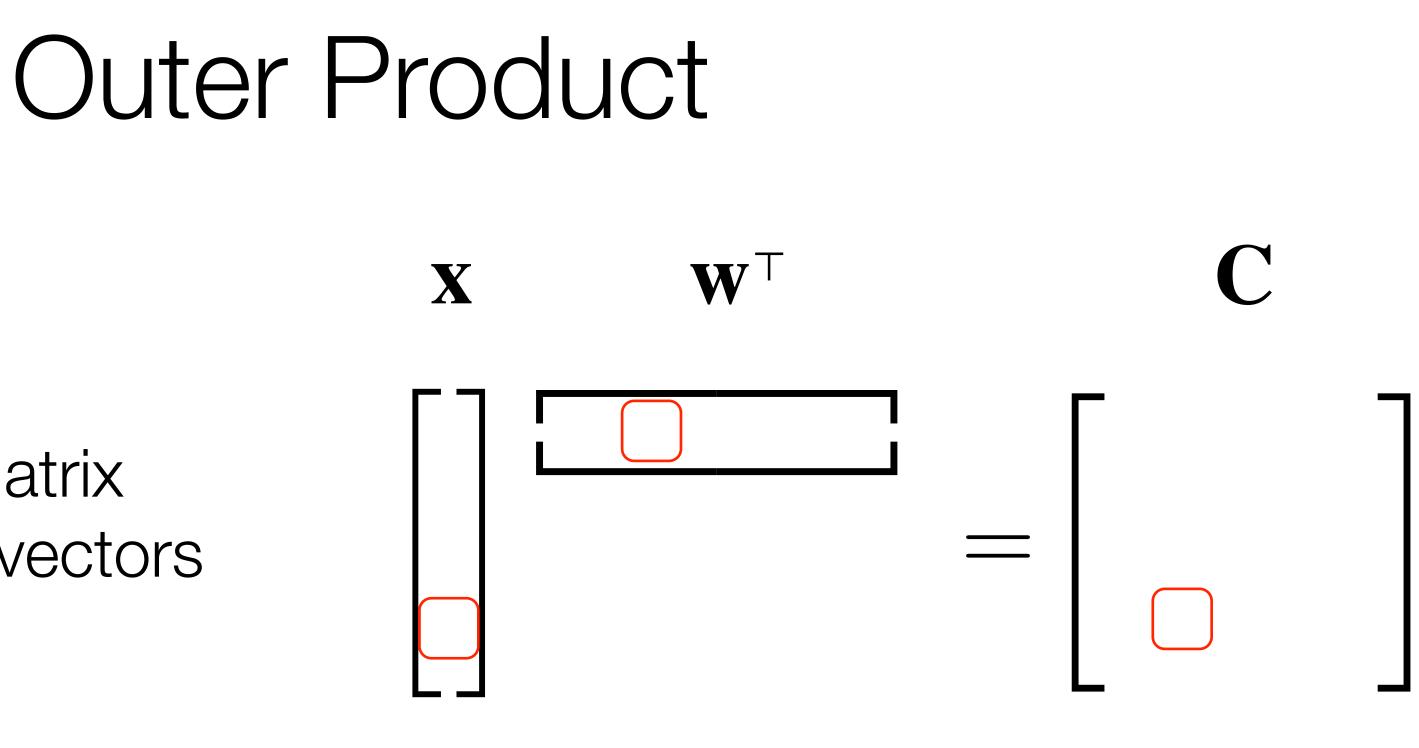
Not commutative, i.e., $AB \neq BA$



 $m \times p$ $n \times p$

Associative, i.e., (AB)C = A(BC)

Special case of Matrix-Matrix Multiplication involving two vectors



 $1 \times m$ *n* × 1

 $n \times m$

 C_{ij} is "inner product" of *i*th entry of x and *j*th entry of w

Identity Matrix

One is the scalar multiplication identity, i.e., $c \times 1 = c$

 $n \times m$ matrix A

$$\begin{bmatrix} 9 & 3 & 5 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Identity matrices are square, with ones on the diagonal entries

- \mathbf{I}_n is the $n \times n$ identity matrix, i.e., $\mathbf{I}_n \mathbf{A} = \mathbf{A}$ and $\mathbf{A} \mathbf{I}_m = \mathbf{A}$ for any

$\begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} = \begin{bmatrix} 9 & 3 & 5 \\ 4 & 1 & 2 \end{bmatrix}$

Inverse Matrix

1/c is the scalar inverse, i.e., $c \times 1/c = 1$

• $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$

Only a square matrix (when n = m) can have an inverse

- Multiplying a matrix by its inverse results in the identity matrix
- For an $n \times n$ matrix A, A⁻¹ denotes its inverse (when it exists)

Euclidean Norm for Vectors

Vector norms generalize this idea for vectors

•
$$\|\mathbf{x}\|_2 = \sqrt{x_1^2 + x_2^2 + .}$$

Equals absolute value when m=1

• Related to scalar product: $\|\mathbf{x}\|_2^2 = \mathbf{x}^\top \mathbf{x}$

- The magnitude / length of a scalar is its absolute value
- The Euclidean norm for $\mathbf{x} \in \mathbb{R}^m$ is denoted by $\|\mathbf{x}\|_2$
 - $..+x_{m}^{2}$

Big O Notation for Time and Space Complexity

Describes how algorithms respond to changes in input size Both in terms of processing time and space requirements We refer to complexity and Big O notation synonymously

Required space proportional to units of storage • Typically 8 bytes to store a floating point number

Required time proportional to number of 'basic operations' • Arithmetic operations $(+, -, \times, /)$, logical tests (<, >, ==)

Big O Notation

Notation: f(x) = O(g(x))• Can describe an algorithm's time or space complexity Informal definition: f does not grow faster than g Formal definition: $|f(x)| \le C|g(x)| \quad \forall x > N$ Ignores constants and lower-order terms • For large enough x, these terms won't matter • E.g., $x^2 + 3x \le Cx^2 \quad \forall \ x > N$

Big O Notation

E.g., O(1) Complexity

operations every time they're called

storage every time they're called

• E.g., storing the results of a fixed number of arithmetic operations

- **Constant** time algorithms perform the same number of
- E.g., performing a fixed number of arithmetic operations
- Similarly, constant space algorithms require a fixed amount of

E.g., O(n) Complexity

proportional to the number of inputs

- E.g., adding two *n*-dimensional vectors requires O(n)arithmetic operations
- Similarly, linear space algorithms require storage proportional to the size of the inputs
- E.g., adding two *n*-dimensional vectors results in a new ndimensional vector which requires O(n) storage

Linear time algorithms perform a number of operations

E.g., $O(n^2)$ Complexity

- proportional to the square of the number of inputs
- resulting matrix)
- Similarly, quadratic space algorithms require storage proportional to the square of the size of the inputs

Quadratic time algorithms perform a number of operations

• E.g., outer product of two *n*-dimensional vectors requires $O(n^2)$ multiplication operations (one per each entry of the

• E.g., outer product of two *n*-dimensional vectors requires $O(n^2)$ storage (one per each entry of the resulting matrix)

Time and Space Complexity Can Differ

- Inner product of two *n*-dimensional vectors • O(n) time complexity to multiply *n* pairs of numbers • O(1) space complexity to store result (which is a scalar)

- Matrix inversion of an $n \times n$ matrix
- $O(n^3)$ time complexity to perform inversion • $O(n^2)$ space complexity to store result

E.g., Matrix-Vector Multiply

Goal: multiply an $n \times m$ matrix with an $m \times 1$ vector

Computing result takes O(nm) time

- There are *n* entries in the resulting vector
- Each entry computed via dot product between two *m*dimensional vectors (a row of input matrix and input vector)

Storing result takes O(n) space • The result is an *n*-dimensional vector

E.g., Matrix-Matrix Multiply

Goal: multiply an $n \times m$ matrix with an $m \times p$ matrix

Computing result takes O(*npm*) time • There are *np* entries in the resulting matrix • Each entry computed via dot product between two *m*-

- dimensional vectors

E.g., Matrix-Matrix Multiply

Goal: multiply an $n \times m$ matrix with an $m \times p$ matrix

Computing result takes O(*npm*) time • There are *np* entries in the resulting matrix • Each entry computed via dot product between two m-

- dimensional vectors

Storing result takes O(np) space • The result is an $n \times p$ matrix