10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

JavaScript/Print version

Contents

1 Contents
2 Introduction
= 2.1 Relation to Java
= 2.2 About this book
= 2.3 Audience
3 First Program
= 3.1 Exercises
= 3.1.1 Exercise 1-1
= 3.1.2 Exercise 1-2
4 The SCRIPT Tag
= 4.1 The script element
= 4.1.1 Scripting language
= 4.2 Inline JavaScript
= 4.2.1 Inline HTML comment markers
= 4.2.2 Inline XHTML JavaScript
= 4.3 Linking to external scripts
= 4.4 Location of script elements
= 4.5 Reference
5 Bookmarklets
= 5.1 JavaScript URI scheme
= 5.2 Using multiple lines of code
= 5.3 The JavaScript Protocol in Links
= 5.4 Examples
6 Lexical Structure
6.1 Case Sensitivity
6.2 Whitespace
6.3 Comments
6.4 Semicolons
6.5 Literals
6.6 Identifiers
= 6.6.1 Naming variables
= 6.7 References
7 Reserved Words
= 7.1 Reserved words used in JavaScript
= 7.2 Words reserved for JavaScript in the future
= 7.2.1 Words that are always reserved
= 7.2.2 Words that are reserved in strict mode
= 7.2.3 Words that were reserved in ECMAScript standards 1-3
= 7.3 References
8 Variables and Types
= 8.1 Variable declaration
= 8.2 Primitive types
= 8.2.1 Boolean type
= 8.2.2 Numeric types
» 8.2.3 String types

https://en.wikibooks.org/wiki/JavaScript/Print_version 1/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

= 8.3 Complex types
= 8.3.1 Array type
= 8.3.2 Object types
= 8.4 Scope
= 8.4.1 Global scope
= 8.4.2 Local scope
= 8.5 See also
= 8.6 Further Reading
= 9 Numbers
= 9.1 Basic use
= 9.2 The Math object
= 9.2.1 Methods
= 9.2.1.1 ceil(float)
9.2.1.2 floor(float)
9.2.1.3 max(intl, int2)
9.2.1.4 min(intl, int2)
9.2.1.5 random()
9.2.1.6 round(float)
= 0.2.2 Properties
= 9.3 Further reading
= 10 Strings
= 10.1 Basic use
= 10.2 Properties and methods of the String() object
10.2.1 concat(text)
10.2.2 length
10.2.3 replace(text, newtext)
10.2.4 slice(start[, end])
10.2.5 substr(start[, number of characters])
10.2.6 substring(start[, end])
10.2.7 toLowerCase()
10.2.8 toUpperCase()
= 10.3 Further reading
= 11 Dates
= 11.1 Properties and methods
= 11.2 Further Reading
= 12 Arrays
=]2.1 Basic use
= 12.1.1 Exercise
= 12.2 Nested arrays
= 12.3 Properties and methods of the Array() object
= 12.3.1 concat()
= 12.3.2 join() and split()
= 12.3.3 pop() and shift()
= 12.3.4 push() and unshift()
= 12.4 Further reading
= 13 Operators
= 13.1 Arithmetic operators
= 13.2 Bitwise operators
= 13.3 Assignment operators
= 13.4 Increment operators
= 13.4.1 Pre and post-increment operators
13.5 Comparison operators
= 13.6 Logical operators
= 13.7 Other operators
s 13.7.17:

https://en.wikibooks.org/wiki/JavaScript/Print_version

2/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

13.7.2 delete
13.7.3 new
13.7.4 instanceof
13.7.5 typeof
= 14 Control Structures
= 14.1 Conditional statements
n 14.1.11if
= 14.1.2 while
= 14.1.3 do ... while
= 14.1.4 for
= 14.2 switch
= 14.3 with
= 14.3.1 Pros
= 14.3.2 Cons
= 14.3.3 Example
15 Functions and Objects
16 Functions
= 16.1 Examples
= 16.1.1 Basic example
= 16.1.2 "Hello World!"
= 16.1.3 Extended "Hello World!"
= 16.2 Functions with arguments
17 Event Handling
= 17.1 Event Handlers
= 17.1.1 Event Attributes
= 17.2 Standard event handlers
= 17.3 Event Handlers as HTML attributes
18 Regular Expressions
= 18.1 Compatibility
18.2 Matching
18.3 Replacement
18.4 Test
18.5 Modifiers
18.6 Operators
18.7 Function call
18.8 See also
= 18.9 External links
= 19 Optimization
= 19.1 JavaScript Optimization
= 19.1.1 Optimization Techniques
= 19.2 Common Mistakes and Misconceptions
= 19.2.1 String concatenation
= 20 Debugging
= 20.1 JavaScript Debuggers
= 20.1.1 Firebug
20.1.2 Venkman JavaScript Debugger
20.1.3 Internet Explorer debugging
20.1.4 Safari debugging
20.1.5 JTF: JavaScript Unit Testing Farm
20.1.6 jsUnit
20.1.7 built-in debugging tools
= 20.2 Common Mistakes
= 20.3 Debugging Methods
= 20.3.1 Following Variables as a Script is Running
= 20.4 Browser Bugs

https://en.wikibooks.org/wiki/JavaScript/Print_version 3/60

10/27/2015

= 20.5 browser-dependent code
= 20.6 References
= 20.7 Further reading
21 DHTML
= 21.1 alert messages

= 21.2 Javascript Button and Alert Message Example:

m 21.3 Javascript if() - else Example
= 21.4 Two Scripts
21.5 Simple Calculator
22 Finding Elements
= 22.1 Simple Use
= 22.2 Use of getElementsByTagName
23 Adding Elements
= 23.1 Basic Usage
= 23.2 Further Use
24 Changing Elements
25 Removing Elements
= 25.1 References
26 Code Structuring
27 Links
= 27.1 Links
28 Useful Software Tools
= 28.1 Editors / IDEs
= 28.2 Engines and other tools

Contents

1. Welcome

1. Introduction
2. First Program

2. Basics

1. Placing the Code

1. The script element

2. Bookmarklets
2. Lexical Structure

1. Reserved Words
3. Variables and Types

1. Numbers ® Strings ® Dates ® Arrays

Operators
Control Structures
Functions and Objects
Event Handling
Program Flow
Regular Expressions

WX

Introduction

https://en.wikibooks.org/wiki/JavaScript/Print_version

JavaScript/Print version - Wikibooks, open books for an open world

4/60

https://en.wikibooks.org/wiki/JavaScript/Introduction
https://en.wikibooks.org/wiki/JavaScript/First_Program
https://en.wikibooks.org/wiki/JavaScript/The_SCRIPT_Tag
https://en.wikibooks.org/wiki/JavaScript/Bookmarklets
https://en.wikibooks.org/wiki/JavaScript/Lexical_Structure
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words
https://en.wikibooks.org/wiki/JavaScript/Variables_and_Types
https://en.wikibooks.org/wiki/JavaScript/Numbers
https://en.wikibooks.org/wiki/JavaScript/Strings
https://en.wikibooks.org/wiki/JavaScript/Dates
https://en.wikibooks.org/wiki/JavaScript/Arrays
https://en.wikibooks.org/wiki/JavaScript/Operators
https://en.wikibooks.org/wiki/JavaScript/Control_Structures
https://en.wikibooks.org/wiki/JavaScript/Functions_and_Objects
https://en.wikibooks.org/wiki/JavaScript/Event_Handling
https://en.wikibooks.org/w/index.php?title=JavaScript/Program_flow&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Regular_Expressions

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

JavaScript is an interpreted computer programming language formalized in the ECMAScript language
standard. JavaScript engines interpret and execute JavaScript. JavaScript engines may be designed for use
as standalone interpretors, embedding in applications, or both. The first JavaScript engine was created by
Netscape for embedding in their Web browser. V8 is a JavaScript engine created for use in Google Chrome
and may also be used as a standalone interpretor. Adobe Flash uses a JavaScript engine called ActionScript
for development of Flash programs.

Relation to Java

JavaScript has no relation to Java aside from having a C-like syntax. Netscape developed JavaScript, and
Sun Microsystems developed Java. The rest of this section assumes a background in programming. You
may skip to the next section, if you like.

Variables have a static type (integer or string for example) that remains the same during the lifespan of a
running program in Java, and have a dynamic type (Number or String for example) that can change during
the lifespan of a running program in JavaScript. Variables must be declared prior to use in Java, and have a
undefined value when referred to prior to assignment in JavaScript.

Java has an extensive collection of libraries that can be imported for use in programs. JavaScript does not
provide any means to import libraries or external JavaScript code. JavaScript engines must extend the
JavaScript language beyond the ECMAScript language standard, if additional functionality is desired, such
as the required functionality provided by V8, or the Document Object Model found in many Web browsers.

Java includes classes and object instances, and JavaScript uses prototypes.

About this book

This book is written as a tutorial, in the sense that all key concepts are explained. As such, it also contains
exercises that are clearly marked as such at the end of a page or chapter. Answers for these exercises are
also included.

The book can also be used as a reference. For this purpose, all keywords are mentioned and described.

Audience

This book assumes you have good knowledge and some experience in the use of computers, Web browsers,
text editors, and software development environments. As you will not learn about HTML, CSS, Java, or
website design in this book, consult an appropriate book to learn about these subjects.

First Program

Here is a single JavaScript statement, which creates a pop-up dialog saying "Hello World!":

https://en.wikibooks.org/wiki/JavaScript/Print_version 5/60

https://en.wikibooks.org/wiki/HyperText_Markup_Language
https://en.wikibooks.org/wiki/Cascading_Style_Sheets
https://en.wikibooks.org/wiki/Java_Programming
https://en.wikiversity.org/wiki/Web_design

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

For the browser to execute the statement, it must be placed inside a <script> element. This element
describes which section of the HTML code contains executable code, and will be described in further detail
later.

<script type="text/javascript"> :
v alert("Hello World!"); !
i</script> !

The <script> element should then be nested inside the <head> element of an HTML document. Assuming
the page is viewed in a browser that has JavaScript enabled, the browser will execute (carry out) the
statement as the page is loading.

i<IDOCTYPE html>

i<html lang="en">

i <head>
<title>Some Page</title>
<script type="text/javascript">

alert("Hello World!");

</script>

</head>

<body>
<p>The content of the web page.</p>

+ </body>

i</html>

This basic hello World program can then be used as a starting point for any new programs that you need to
create.

Exercises

Exercise 1-1

Copy and paste the basic program in a file, save it on your hard disk as "exercise 1-1.html". You can run it
in two ways:

1. By going to the file with a file manager, and opening it using a web browser (e.g. in Windows
Explorer it is done with a double click)

2. By starting your browser, and then opening the file from the menu. For Firefox, that would be:
Choose File in the menu, then Open File, then select the file.

What happens?

Answer

A dialog appears with the text: Hello World!

Exercise 1-2

Save the file above as "exercise 1-2.html". Replace the double quotes in the line alert("Hello World!");
with single quotes, so it reads alert('"Hello World!'); and save the result. If you open this file in the browser,
what happens?

Answer

https://en.wikibooks.org/wiki/JavaScript/Print_version 6/60

https://en.wikipedia.org/wiki/File_manager
https://en.wikipedia.org/wiki/Windows_Explorer

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Nothing changes. A dialog appears with the text: Hello World! The double quotes and the single quotes
are equivalent.

The SCRIPT Tag

The script element

All JavaScript, when placed in an HTML document, needs to be within a script element. A script
element is used to link to an external JavaScript file, or to contain inline scripting (script snippets in the
HTML file). A script element to link to an external JavaScript file looks like:

E<script type="text/javascript"> E
v // JavaScript code here !
i</script> :

Inline scripting has the advantage that both your HTML and your JavaScript are in one file, which is
convenient for quick development and testing. Having your JavaScript in a separate file is recommended
for JavaScript functions that can potentially be used in more than one page, and also to separate content
from behaviour.

Scripting language

The script element will work in most browsers, because JavaScript is currently the default scripting
language. It is strongly recommended though to specify what type of script you are using in case the
default scripting language changes.

The scripting language can be specified individually in the script element itself, and you may also use a
meta tag in the head of the document to specify a default scripting language for the entire page.

While the text/javascript was formally obsoleted in April 2006 by RFC 4329

(http://www.ietf.org/rfc/rfc4329.txt) [11in favour of application/javascript, it is still preferable to
continue using text/javascript due to old HTML validators and old Web browsers such as Internet

Explorer 5 that are unable to understand application/javascript. 2]

Inline JavaScript

https://en.wikibooks.org/wiki/JavaScript/Print_version 7/60

http://www.ietf.org/rfc/rfc4329.txt

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Using inline JavaScript allows you to easily work with HTML and JavaScript within the same page. This is
commonly used for temporarily testing out some ideas, and in situations where the script code is specific to
that one page.

<script type="text/javascript"> E
v // JavaScript code here !
i</script> :

Inline HTML comment markers

The inline HTML comments are to prevent older browsers that do not understand the script element from
displaying the script code in plain text.

<script type="text/javascript">
<l--

// JavaScript code here

/) -

</script>

Older browsers that do not understand the script element will interpret the entire content of the script
element above as one single HTML comment, beginning with "<!--" and ending with "-->", effectively
ignoring the script completely. If the HTML comment was not there, the entire script would be displayed in
plain text to the user by these browsers.

Current browsers that know about the script element will ignore the first line of a script element, if it
starts with "<!--". In the above case, the first line of the actual JavaScript code is therefore the line "//
JavaScript code here".

The last line of the script, "// -->", is a one line JavaScript comment that prevents the HTML end
comment tag "-->" from being interpreted as JavaScript.

The use of comment markers is rarely required nowadays, as the browsers that do not recognise the script
element are virtually non-existent. These early browsers were Mosaic, Netscape 1, and Internet Explorer 2.
From Netscape 2.0 in December 1995 and Internet Explorer 3.0 in August 1996. Those browsers were able

to interpret J. avaScript.[3] Any modern browser that doesn't support JavaScript will still recognize the
<script> tag and not display it to the user.

Inline XHTML JavaScript

In XHTML, the method is somewhat different:

<script type="text/javascript">

i // <I[CDATA[

E // [Todo] JavaScript code here!
v/ 11>

i</script>

Note that both the <! [CDATA[tags are commented out. The // prevents the browser from mistakenly
interpreting the <! [CDATA[as a JavaScript statement (that would be a syntax error).

Linking to external scripts

https://en.wikibooks.org/wiki/JavaScript/Print_version 8/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

JavaScript is commonly stored in a file so that it may be used by many web pages on your site. This makes
it much easier for updates to occur and saves space on your server. This method is recommended for
separating behavior (http://alistapart.com/articles/behavioralseparation) (JavaScript) from content
((X)HTML) and it prevents the issue of incompatibility with inline comments in XHTML and HTML.

Add src="script. js" to the opening script tag. Replace script.js with the path to the .js file containing
the JavaScript.

Because the server provides the content type when the file is requested, specifying the type is optional
when linking to external scripts. It's still advised to specify the type as text/javascript, in case the server
isn't set up correctly, and to prevent HTML validation complaints.

Location of script elements

The script element may appear almost anywhere within the HTML file.

A standard location is within the head element. Placement within the body however is allowed.

i<!DOCTYPE html>

<html>

<head>

1 <title>Web page title</title>
| <script type="text/javascript" src="script.js"></script>
</head>

<body>

E<!—— HTML code here -->

'</body>

'</html>

There are however some best practices for speeding up your web site [4] from the Yahoo! Developer
Network that specify a different placement for scripts, to put scripts at the bottom
(http://developer.yahoo.com/performance/rules.html#js_bottom), just before the </body> tag. This speeds
up downloading, and also allows for direct manipulation of the DOM while the page is loading.

<!DOCTYPE html>

i<html>

«<head>

' <title>Web page title</title>

'</head>

<body>

i<!-- HTML code here -->

i<script type="text/javascript" src="script.js"></script>
«</body>

i</html>

Reference

1. RFC 4329 (http://www.ietf.org/rfc/rfc4329.txt): Scripting Media Types

2. "application/javascript" and "application/ecmasscript" media types not recognized.
(https://connect.microsoft.com/IE/feedback/ViewFeedback.aspx?FeedbackID=338278)

3. w:JavaScript#History and naming

https://en.wikibooks.org/wiki/JavaScript/Print_version 9/60

http://alistapart.com/articles/behavioralseparation
http://developer.yahoo.com/performance/rules.html#js_bottom
http://www.ietf.org/rfc/rfc4329.txt
https://connect.microsoft.com/IE/feedback/ViewFeedback.aspx?FeedbackID=338278
https://en.wikipedia.org/wiki/JavaScript#History_and_naming

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

4. Yahoo: best practices for speeding up your web site
(http://developer.yahoo.com/performance/rules.html)

Bookmarklets

Bookmarklets are one line scripts stored in the URL field of a bookmark. Bookmarklets have been around
for a long time so they will work in older browsers.

JavaScript URI scheme

You should be familiar with URL that start with schemes like http and ftp, e.g. http://en.wikibooks.org/.
There is also the JavaScript scheme, which is used to start every bookmarklet.

Using multiple lines of code

Since you cannot have line breaks in bookmarklets you must use a semicolon at the end of each code
statement instead.

The JavaScript Protocol in Links

The JavaScript protocol can be used in links. This may be considered bad practice, as it prevents access
for or confuses users who have disabled JavaScript. See Best Practices.

__

Examples

A large quantity of links may be found on bookmarklets.com (http://www.bookmarklets.com/), which
show a variety of features that can be performed within JavaScript.

Lexical Structure

Case Sensitivity

JavaScript is case-sensitive. This means that Hello() is not the same as HELLO() or hello()

Whitespace

https://en.wikibooks.org/wiki/JavaScript/Print_version 10/60

http://developer.yahoo.com/performance/rules.html
https://en.wikibooks.org/wiki/JavaScript/Best_Practices
http://www.bookmarklets.com/

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Whitespace can be: extra indents, line breaks, and spaces. JavaScript ignores it, but it makes the code easier
for people to read.

The following is JavaScript with very little whitespace.

ﬁunction filterEmailKeys(event){ E
levent=event | |[window.event; !
wvar charCode=event.charCode| |event.keyCode;

wvar char=String.fromCharCode(charCode); ,
if(/[a-zA-Z0-9_\-\.@]/.exec(char)) .
ireturn true; i
return false; ;

function filterEmailKeys(event) { |

i event = event || window.event; E

var charCode = event.charCode || event.keyCode; '

var char = String.fromCharCode(charCode);

if (/[a-zA-Z0-9_\-\.@]/.exec(char)) { !
return true; X

} :

return false;

R i
' evt = evt || window.event; i
‘ var charCode = evt.charCode || evt.keyCode;

E var char = String.fromCharCode (charCode);

| if (/[a-zA-Z0-9_\-\.@]/.exec (char)) E
: { I
‘ return true; '
! } !
E return false; ;
Vot I
Comments

Comments allow you to leave notes in your code to help other people understand it. They also allow you to
comment out code that you want to hide from the parser, but you don't want to delete.

Single-line comments

A double slash, //, turns all of the following text on the same line into a comment that will not be
processed by the JavaScript interpreter.

E// Shows a welcome message
alert("Hello, World!")

Multi-line comments

Multi-line comments are begun with slash asterisk, /*, and end with the reverse asterisk slash, */.

https://en.wikibooks.org/wiki/JavaScript/Print_version 11/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Here is an example of how to use the different types of commenting techniques.

E/* This is a multi-line comment
ithat contains multiple lines
'of commented text. */

var a = 1;
/* commented out to perform further testing :
a =a + 2; :
Ea =a/ (a- 3); // is something wrong here? E
W x/ 1
Ealert('a: " +oa); E
Ld
Semicolons

In many computer languages, semicolons are required at the end of each code statement. In JavaScript the
use of semicolons is optional, as a new line indicates the end of the statement. This is called automatic

semicolon insertion, and the rules for it are quite complex.l!! Leaving out semicolons and allowing the
parser to automatically insert them can create complex problems.

__

a=bh+c
'(d + e).print()

The above code is not interpreted as two statements. Because of the parentheses on the second line,
JavaScript interprets the above as if it were

__

__

Even though semicolons are optional, it's preferable to end statements with a semicolon to prevent any
misunderstandings from taking place.

Literals

A literal is a hard coded value. Literals provide a means of expressing specific values in your script. For
example, at the right of equal:

There are several types of literals available. The most common are the string literals, but there are also
integer and floating-point literals, array and boolean literals, and object literals.

Example of an object literal:

__

Evar myObject = { name:"value", anotherName:"anotherValue"}; E

Details of these different types are covered in Variables and Types.

https://en.wikibooks.org/wiki/JavaScript/Print_version 12/60

https://en.wikibooks.org/wiki/JavaScript/Variables_and_Types

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Identifiers

An identifier is a name for a piece of data such as a variable, array, or function. There are rules:

= Letters, dollar signs, underscores, and numbers are allowed in identifiers.
» The first character cannot be a number.

Examples of valid identifiers:

= U
$hello
_Hello
hello90

1A2B3C is an invalid identifier, as it starts with a number.

Naming variables

When naming variables there are some rules that must be obeyed:

= Upper case and lower case letters of the alphabet, underscores, and dollar signs can be used
Numbers are allowed after the first character

No other characters are allowed

Variable names are case sensitive: different case implies a different name

A variable may not be a reserved word

References

1. Standard ECMA-262 (http://www.ecma-international.org/publications/files’/ECMA-ST/Ecma-
262.pdf) ECMAScript Language Specification, Chapter 7.9 - Automatic Semicolon Insertion

Reserved Words

This page contains a list of reserved words in JavaScript, which cannot be used as names of variables,
functions or other objects.

Reserved words used in JavaScript

Current list of keywords used in JavaScript Version 5.1:[!]

break delete |if this |while
case do in throw with
catch else instanceof try

continue finally new typeof
debugger | for return var

default |function switch void

https://en.wikibooks.org/wiki/JavaScript/Print_version

13/60

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/break
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_Words/delete&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/if
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/this
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/while
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/case
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/do
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_Words/in&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/throw
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_Words/with&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/catch
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/else
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/instanceof
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/try
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/continue
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/finally
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/new
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/typeof
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_Words/debugger&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/for
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/return
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/var
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_Words/default&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_Words/function&action=edit&redlink=1
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words/switch
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_Words/void&action=edit&redlink=1

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

A few other reserved words used in JavaScript represent literal values:[!]

false |null true

Words reserved for JavaScript in the future

Some words have been reserved according to the ECMAScript specification so that they cannot be used as
variable names, although currently, they do not have any functionality. These keywords may or may not be
reserved words for some ECMAScript specification, and are grouped according to their condition of being

reserved.!]
Words that are always reserved

await |enum

Words that are reserved in strict mode

implements |private |static
interface protected

package public
Words that were reserved in ECMAScript standards 1-3

a_bs_tr_aeb[citation needed] | extends Ha;t_]-__ve[citation needed]

bee}ea-ﬂ[amﬁon needed] final [citation needed] 5he-r—t—[0itmi0n needed]

pytelcitation needed| £1eatlcitation needed] super

eICh_j‘_F[citaztion needed] ge_te[citation needed] S—yﬁeh-rle-ﬂ—i—z-ed[dmﬁon needed]

class import -‘Eh-Fews[CimﬁO” needed]
const jpelcitation needed] | oo s apylcitation needed]
doubl E[citation needed] let volatil E[citation needed]
export }e_n_g[citation needed]
References

1. "ECMA-262 5.1: ECMAScript Language Specification" (http://www.ecma-international.org/ecma-
262/5.1/Ecma-262.pdf) 2011, Section 7.6.1: Reserved Words, (keywords, the two Boolean literals,
the null literal, and future reserved words).

2. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical grammar

Variables and Types

https://en.wikibooks.org/wiki/JavaScript/Print_version 14/60

https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_Words/false&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_Words/null&action=edit&redlink=1
https://en.wikibooks.org/w/index.php?title=JavaScript/Reserved_Words/true&action=edit&redlink=1
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
https://en.wikibooks.org/wiki/Wikibooks:OR
http://www.ecma-international.org/ecma-262/5.1/Ecma-262.pdf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

JavaScript is a loosely typed language. This means that you can use the same variable for different types of
information, but you may also have to check what type a variable is yourself, if the differences matter. For
example, if you wanted to add two numbers, but one variable turned out to be a string, the result wouldn't
necessarily be what you expected.

Variable declaration

Variables are commonly explicitly declared by the var statement, as shown below:

__

The above variable is created, but has the default value of undefined. To be of value, the variable needs to
be initialized:

But make sure to declare a variable with var before (or while) assigning to it; otherwise you will create a
"scope bug."

Primitive types

Primitive types are types provided by the system, in this case by JavaScript. Primitive type for JavaScript
are Booleans, numbers and text. In addition to the primitive types, users may define their own classes.

The primitive types are treated by JavaScript as value types and when you pass them around they go as
values. Some types, such as string, allow method calls.

Boolean type

Boolean variables can only have 2 possible values, true or false.

wvar mayday = false;
wvar birthday = true; |

Numeric types

You can use integer and double types on your variables, but they are treated as a numeric type.

__

In ECMA JavaScript your number literals can go from 0 to -+1.79769e+308. And because 5e-324 is the
smallest infinitesimal you can get, anything smaller is rounded to 0.

https://en.wikibooks.org/wiki/JavaScript/Print_version 15/60

https://en.wikibooks.org/wiki/JavaScript/Variables_and_Types#Scope

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

String types

The String and char types are all strings, so you can build any string literal that you wished for.

war myName
var myChar

Complex types

A complex type is an object, be it either standard or custom made. Its home is the heap and goes
everywhere by reference.

Array type

In JavaScript, all Arrays are untyped, so you can put everything you want in an Array and worry about that
later. Arrays are objects, they have methods and properties you can invoke at will. For example, the
.length property indicates how many items are currently in the array. If you add more items to the array,
the value of the . length gets larger. You can build yourself an array by using the statement new followed
by Array, as shown below.

Evar myArray = new Array(0, 2, 4);
wvar myOtherArray = new Array();

__

war myArray = [0, 2, 4];
var myOtherArray = [1;

EmyArray[Z] = "Hello";
var text = myArray[2];

__

There is no limit to the number of items that can be stored in an array.
Object types

An object within JavaScript is created using the new operator:

Evar myObject = new Object(); !

--z-
Q
=
3

<
o
o
.
o
(g}
—~+
1]
.
-

JavaScript objects can be built using inheritance and overriding, and you can use polymorphism. There are
no scope modifiers, with all properties and methods having public access. More information on creating
objects can be found in Object Oriented Programming.

https://en.wikibooks.org/wiki/JavaScript/Print_version 16/60

https://en.wikibooks.org/wiki/JavaScript/Object_Oriented_Programming

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

You can access browser built-in objects and objects provided through browser JavaScript extensions.
Scope

In JavaScript, the scope is the current context of the code. It refers to the accessability of functions and
variables, and their context. There exists a global and a local scope. The understanding of scope is crucial
to writing good code. Whenever the code accesses this, it accesses the object that "owns" the current
scope.

Global scope

An entity like a function or a variable has global scope if it is accessible from everywhere in the code.

__

ﬁunction hello() {
. alert("Hello, " + a + "!");

33
Ehello(); // prints the string "Hello, 99!"
:alert(a); // prints the number 99

Here, the variable a is in global scope and accessible both in the main code part and the function hello()
itself.

Local scope
A local scope exists when an entity is defined in a certain code part, like a function.
function hello() {

. var x = 5;
: alert("Hello, " + (a + x) + "1");

i}

Ehello(): // prints the string "Hello, 104!"
alert(a); // prints the number 99
alert(x); // throws an exception

If you watch the code on a browser (on Google Chrome, this is achieved by pressing F12), you will see an
Uncaught ReferenceError: x is not defined for the last line above. This is because x is defined in the
local scope of the function hello and is not accessible from the outer part of the code.

See also

= Closures

Further Reading

= "Values, variables, and literals". MDN. 2013-05-28. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Values, variables, and literals. Retrieved 2013-06-20.

https://en.wikibooks.org/wiki/JavaScript/Print_version 17/60

https://en.wikibooks.org/wiki/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Values,_variables,_and_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Values,_variables,_and_literals

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Numbers

JavaScript implement numbers as floating point values, that is, they're attaining decimal values as well as
whole number values.

Basic use

To make a new number, a simple initialization suffices:

After you have made your number, you can then modify it as necessary. Numbers can be modified or
assigned using the operators defined within JavaScript.

Efoo =1: //foo = 1
foo += 2; //foo
foo -= 2; //foo

3 (the two gets added on) E
1 (the two gets removed) ‘

Number literals define the number value. In particular:

= They appear as a set of digits of varying length.

= Negative literal numbers have a minus sign before the set of digits.

= Floating point literal numbers contain one decimal point, and may optionally use the e notation with
the character e.

= An integer literal may be prepended with "0" to indicate that a number is in base-8. (8 and 9 are not
octal digits, and if found, cause the integer to be read in the normal base-10).

= An integer literal may also be found with prefixed "0x" to indicate a hexadecimal number.

The Math object

Unlike strings, arrays, and dates, the numbers aren't objects, so they don't contain any methods that can be
accessed by the normal dot notation. Instead a certain Math object provides usual numeric functions and
constants as methods and properties. The methods and properties of the Math object are referenced using
the dot operator in the usual way, for example:

var varOne = Math.ceil(8.5); :
wvar varPi Math.PI; !
var sqrt3 Math.sqrt(3); !

Methods
ceil(float)

Returns the least integer greater than the number passed as an argument.

war myInt = Math.ceil(90.8); :

document.write(myInt); //97;

floor(float)

https://en.wikibooks.org/wiki/JavaScript/Print_version 18/60

https://en.wikibooks.org/wiki/JavaScript/Operators
https://en.wikipedia.org/wiki/Scientific_Notation#E_notation

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Returns the greatest integer less than the number passed as an argument.

war myInt = Math.floor(90.8);
'document.write(myInt); //90;,

max(int1, int2)

Returns the highest number from the two numbers passed as arguments.

war myInt = Math.max(8, 9);
'document.write(myInt); //9

min(int1, int2)

Returns the lowest number from the two numbers passed as arguments.

war myInt = Math.min(8, 9);
'‘document.write(myInt); //8

random()

Generates a pseudo-random number.

round(float)

Returns the closest integer to the number passed as an argument.

Evar myInt = Math.round(90.8);
idocument.write(myInt); //97;

Properties

Properties of the Math object are most commonly used constants or functions:

E: Returns the constant e.

= PI: Returns the value of pi.

= LN10: Returns the natural logarithm of 10.
= LN2: Returns the natural logarithm of 2.

= SQRT2: Returns the square root of 2.

Further reading

= JavaScript Math Object at MDN (https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global Objects/Math)

https://en.wikibooks.org/wiki/JavaScript/Print_version

19/60

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world
Strings
A string is a type of variable that stores a string (chain of characters).

Basic use

To make a new string, you can make a variable and give it a value of new String().

wvar foo = new String(); ;

:foo = "bar"; // foo = "bar" !
foo = "barblah"; // foo = "barblah" !
'foo += "bar"; // foo = "barblahbar" '

A string literal is normally delimited by the ' or ” character, and can normally contain almost any
character. Common convention differs on whether to use single quotes or double quotes for strings. Some
developers are for single quotes (Crockford, Amaram, Sakalos, Michaux) while others are for double
quotes (NextApp, Murray, Dojo). Whichever method you choose, try to be consistent in how you apply it.

Due to the delimiters, it's not possible to directly place either the single or double quote within the string
when it's used to start or end the string. In order to work around that limitation, you can either switch to the
other type of delimiter for that case, or place a backslash before the quote to ensure that it appears within
the string:

= 'The cat says, "Meow!""';
foo = "The cat says, \"Meow!\"";
= "It's \"cold\" today.";
= 'It\'s "cold" today."';

Properties and methods of the String() object

As with all objects, Strings have some methods and properties.

concat(text)

The concat() function joins two strings.

wvar foo = "Hello"; E
wvar bar = foo.concat(" World!") !
alert(bar); // Hello World! !
length

https://en.wikibooks.org/wiki/JavaScript/Print_version 20/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Returns the length as an integer.

__

Evar foo = "Hello!"; E
ralert(foo.length); /7 6 !

replace(text, newtext)

The replace() function returns a string with content replaced. Only the first occurrence is replaced.

war foo = "foo bar foo bar foo"; |
Evar newString = foo.replace("bar", "NEW!") E
alert(foo); // foo bar foo bar foo '
alert(newString); // foo NEW! foo bar foo !

As you can see, the replace() function only returns the new content and does not modify the 'foo' object.

slice(start[, end])

Slice extracts characters from the start position, essentially the same as substring

__

__

Unlike substring, the slice method never swaps the start and end positions. If the start is after the end,
slice will attempt to extract the content as presented, but will most likely provide unexpected results.

E"hello".slice(?,, 1); /7" E

__

substr(start[, number of characters])

substr extracts characters from the start position, essentially the same as substring/slice.

__

substring(start[, end])

substring extracts characters from the start position
https://en.wikibooks.org/wiki/JavaScript/Print_version 21/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

E"hello".substringm); // "ello"

substring always works from left to right. If the start position is larger than the end position, substring
will swap the values; although sometimes useful, this is not always what you want; different behavior is

provided by slice.

toLowerCase()

This function returns the current string in lower case.

Evar foo = "Hello!";
ralert(foo.tolLowerCase()); // hello!

toUpperCase()

This function returns the current string in upper case.

wvar foo = "Hello!";
'alert(foo.toUpperCase()); // HELLO!

Further reading

= JavaScript String Object at MDN (https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global Objects/String)

Dates

A Date is an object that contains a given time to millisecond precision.

Unlike strings and numbers, the date must be explicitly created with the new operator.

The Date object may also be created using parameters passed to its constructor. By default, the Date object

contains the current date and time found on the computer, but can be set to any date or time desired.

https://en.wikibooks.org/wiki/JavaScript/Print_version

22/60

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

The date can also be returned as an integer. This can apply to seeding a PRNG method, for example.

The date object normally stores the value within the local time zone. If UTC is needed, there are a set of
functions available for that use.

The Date object does not support non-CE epochs, but can still represent almost any available time within
its available range.

Properties and methods

Properties and methods of the Date() object:

getDate()
Returns the day of the month. [0 - 30]

getbay()
Returns the day of the week within the object. [0 - 6]. Sunday is 0, with the other days of the week

taking the next value.

getFullYear()

Retrieves the full 4-digit year within the Date object.
getMonth()

Returns the current month. [0 - 11]
parse(text)

Reads the string fext, and returns the number of milliseconds since January 1, 1970.
setFullYear (year)
Stores the full 4-digit year within the Date object.
setMonth(month, day)
Sets the month within the Date object, and optionally the day within the month. [0 - 11]. The Date
object uses 0 as January instead of 1.

Further Reading

= JavaScript Date Object at MDN (https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global _Objects/Date)

Arrays

An array is a type of variable that stores a collection of variables. Arrays in JavaScript are zero-based -
they start from zero. (instead of foo[1], foo[2], foo[3], JavaScript uses foo[0], foo[1], foo[2].)

Basic use

To make a new array, make a variable and give it a value of new Array().

https://en.wikibooks.org/wiki/JavaScript/Print_version 23/60

https://en.wikipedia.org/wiki/Common_Era
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

After defining it, you can add elements to the array by using the variable's name, and the name of the array

element in square brackets.

EfOO[O]

! = "foo";
foo[1] = "fool";
= "food"

foo[2]

Evar foo = ["foo", "fool", "food"];

Exercise

Make an array with "zzz" as one of the elements, and then make an alert box using that element.

Answer

Evar array = ["anton", "bertha", "caesar", "zzz"];

Ealert(array[3]);

Nested arrays

You can put an array in an array.

The first step is to simply make an array. Then make an element (or more) of it an array.

Evar foo2 = new Array();
T002[0] = new Array();
'foo2[1] = new Array();

EfooZ[O][O]
fo02[0][1]

"something goes here";

"something else";

Ef002[1][0] "another element";

foo2[1]1[1] "yet another";

alert(foo2[0][0]); // outputs "something goes here"

Evar foo2 = [["something goes here", "something else"],
! ["another element", "yet another"] 7];

https://en.wikibooks.org/wiki/JavaScript/Print_version

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Evar foo2 = [["something goes here", "something else"], E
' ["another element", "yet another"] !

__

Properties and methods of the Array() object

concat()

The concat () method returns the combination of two or more arrays.

To use it, first you need two or more arrays to combine.

Evar arrayl = ["a"
var array2 = ["

join() and split()

The join() method combines all the elements of an array into a single string, separated by a specified
delimiter. If the delimiter is not specified, it is set to a comma. The split() is the opposite and splits up
the contents of a string as elements of an array, based on a specified delimiter.

To use join(), first make an array.

a_split(n’ n); // [Han’ an, e
b.split("; "); // ["a", "b", "c"

__

pop() and shift()

The pop() method removes and returns the last element of an array. The shift () method does the same
with the first element. (Note: The shift() method also changes all the index numbers of the array. For
example, array[0] is removed, array[1] becomes array[0], array[2] becomes array[1], and so on.)

https://en.wikibooks.org/wiki/JavaScript/Print_version 25/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

First, make an array.

Ealert(array); // outputs "0, 1, 2, 3 E
talert(array.pop()); // outputs "3" '
alert(array); // outputs "0, 1, 2" .
alert(array.shift()); // outputs "0" X
Ealert(array); // outputs "1, 2" E

push() and unshift()

The push() and unshift() methods reverse the effect of pop() and shift(). The push() method adds an
element to the end of an array and returns its new length. The unshift() method does the same with the
beginning of the array (and like shift(), also adjusts the indexes of the elements.)

array.unshift("0"); /7 "0, 1, 2"
rarray.push("3"); // "0, 1, 2

__

Further reading

= JavaScript Array Object at MDN (https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global Objects/Array)

Operators

Arithmetic operators

JavaScript has the arithmetic operators +, -, *, /, and %. These operators function as the addition,
subtraction, multiplication, division, and modulus operators, and operate very similarly to other languages.

var a = 12 + 5; /717 :
war b = 12 - 5; /77 |
var ¢ = 12*5; // 60 ;
var d = 12/5; // 2.4 - division results in floating point numbers. '
wvar e = 12%5; // 2 - the remainder of 12/5 in integer math is 2. !

Some mathematical operations, such as dividing by zero, cause the returned variable to be one of the error
values - for example, infinity, or NaN.

The return value of the modulus operator maintains the sign of the first operand.

The + and - operators also have unary versions, where they operate only on one variable. When used in this
fashion, + returns the number representation of the object, while - returns its negative counterpart.

wvar a

wvar b a; // b = "1": a string

https://en.wikibooks.org/wiki/JavaScript/Print_version 26/60

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

1
wvar ¢

+a; // ¢ = 1: a number
var d = -

-a; /7 d 1: a number

+ 1s also used as the string concatenation operator: If any of its arguments is a string or is otherwise not a
number, any non-string arguments are converted to strings, and the 2 strings are concatenated. For
example, 5 + [1, 2, 3] evaluates to the string "51, 2, 3". More usefully, str1 + " " + str2 returns
str1 concatenated with str2, with a space between.

All other arithmetic operators will attempt to convert their arguments into numbers before evaluating. Note
that unlike C or Java, the numbers and their operation results are not guaranteed to be integers.

Bitwise operators

There are seven bitwise operators: &, |, A, ~, >>, <<, and >>>.

These operators convert their operands to integers (truncating any floating point towards 0), and perform
the specified bitwise operation on them. The logical bitwise operators, &, |, and A, perform the and, or, and
xor on each individual bit and provides the return value. The ~ (not operator) inverts all bits within an
integer, and usually appears in combination with the logical bitwise operators.

Two bit shift operators, >>, <<, move the bits in one direction that has a similar effect to multiplying or
dividing by a power of two. The final bit-shift operator, >>>, operates the same way, but does not preserve
the sign bit when shifting.

These operators are kept for parity with the related programming languages, but are unlikely to be used in
most JavaScript programs.

Assignment operators

The assignment operator = assigns a value to a variable. Primitive types, such as strings and numbers are
assigned directly, however function and object names are just pointers to the respective function or object.
In this case, the assignment operator only changes the reference to the object rather than the object itself.
For example, after the following code is executed, "0, 1, 0" will be alerted, even though setA was passed to
the alert, and setB was changed. This is, because they are two references to the same object.

[0, 1, 21; |
. setA; E
isetB[2] = 0; !
alert(setA); '

__

All the above operators have corresponding assignment operators of the form operator=. For all of them, x
operator=y 1s just a convenient abbreviation for X = x operatory.

https://en.wikibooks.org/wiki/JavaScript/Print_version 27/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Arithmetic Logical | Shift

+= &: >>=
-= = <<=
*= A= >>>=
%=

wvar els = document.getElementsByTagName('h2');
Evar i;

for (i = 0; 1 < els.length; i += 1) {

' // do something with els[i]

Increment operators

There are also the increment and decrement operators, ++ and - -. a++ increments a and returns the old

value of a. ++a increments a and returns the new value of a. The decrement operator functions similarly,

but reduces the variable instead.

As an example, the last four lines all perform the same task:

Pre and post-increment operators

Increment operators may be applied before or after a variable. When they are applied before or after a
variable, they are pre-increment or post-increment operators, respectively. The choice of which to use

changes how they affect operations.

E// increment occurs before a is assigned to b
var a = 1;

var b = ++a; // a =2, b =2,

i// increment occurs to ¢ after ¢ is assigned to d
Evar c
var d

I
—_

Due to the possibly confusing nature of pre and post-increment behaviour, code can be easier to read, if the

increment operators are avoided.

E// increment occurs before a is assigned to b
var a = 1;

a += 1,
wvar b

W// increment occurs to c after ¢ is assigned to d
wvar ¢ = 1;

var d = c;

c+=1, //c=2,d=1,

a; //a=2,b=2

https://en.wikibooks.org/wiki/JavaScript/Print_version

28/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Comparison operators

The comparison operators determine, if the two operands meet the given condition.

Operator Returns

I= true, if the two operands are not equal

== |true, if the two operands are not identical

>
one
- true, if the first operand is greater than or equal to
the second one
< true, if the first operand is less than the second one
- true, if the first operand is less than or equal to the

second one

true, if the two operands are equal

true, if the two operands are identical

true, if the first operand is greater than the second

Notes

May ignore operand's type
(e.g. a string as an integer)

Does not ignore operands' types, and
only

returns true if they are the same type
and value

May ignore an operand's type
(e.g. a string as an integer)

Does not ignore the operands' types,
and only

returns false if they are the same type
and value.

Be careful when using == and !=, as they may ignore the type of one of the terms being compared. This can

lead to strange and non-intuitive situations, such as:

__

EO == '" // true

0 == "'0" // true

‘false == 'false' // false; (''Boolean to string'')
false == '0' // true (''Boolean to string'")
false == undefined // false

false == null // false (''Boolean to null'')
null == undefined // true

For stricter compares use === and !==

EO === '' // false

0 === '0' // false

false === 'false' // false

false === '0' // false

ifalse === undefined // false

false === null // false

'null === undefined // false

Logical operators

m &&-and
= || -or

https://en.wikibooks.org/wiki/JavaScript/Print_version

29/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

= | -not

The logical operators are and, or, and not. The && and | | operators accept two operands and provides their
associated logical result, while the third accepts one, and returns its logical negation. & and | | are short
circuit operators. If the result is guaranteed after evaluation of the first operand, it skips evaluation of the
second operand.

Technically, the exact return value of these two operators is also equal to the final operand that it evaluated.
Due to this, the & operator is also known as the guard operator, and the | | operator is also known as the
default operator.

function handleEvent(event) {

' event = event || window.event;

: var target = event.target || event.srcElement;

: if (target && target.nodeType === 1 && target.nodeName === 'A") {
/7

! ¥

The ! operator determines the inverse of the given value, and returns the boolean: true values become false,
or false values become true.

Note: JavaScript represents false by either a Boolean false, the number 0, an empty string, or the built in
undefined or null type. Any other value is treated as true.

Other operators

Evar target = (a == b) ? c : d; E

__

Be cautious though in its use. Even though you can replace verbose and complex if/then/else chains with
ternary operators, it may not be a good idea to do so. You can replace

if (p & q) { :
, return a; .
i+ else { '
: if (r = s) { |
E return b; |
! } else { !
: if (t] v { |
' return c; ;
: } else { |
: return d; .
! } !
L) !
i X
with

return (p & q) ? a |
poo(rl=s)?b :
E (] v)y ?7c E
v d X

https://en.wikibooks.org/wiki/JavaScript/Print_version 30/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

The above example is a poor coding style/practice. When other people edit or maintain your code, (which
could very possibly be you,) it becomes much more difficult to understand and work with the code.

Instead, it is better to make the code more understandable. Some of the excessive conditional nesting can
be removed from the above example.

if (p && q) {

: return a;

qif (r 1= s) {

! return b;

s

HE Ot || tv) {
| return c;

} else {

' return d;

delete x unbinds x.

new

new cl creates a new object of type c/. The ¢/ operand must be a constructor function.
instanceof

o instanceof c tests whether o is an object created by the constructor c.

typeof

typeof x returns a string describing the type of x. Following values may be returned:!!]

Type returns

boolean |"boolean"

number "number"
null "object"
string "string"

undefined | "undefined"

others "object"

Control Structures

The control structures within JavaScript allow the program flow to change within a unit of code or
function. These statements can determine whether or not given statements are executed, as well as repeated
execution of a block of code.

https://en.wikibooks.org/wiki/JavaScript/Print_version 31/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Most of the statements enlisted below are so-called conditional statements that can operate either on a
statement or a block of code enclosed with braces ({ and }). The same structures utilize Booleans to
determine whether or not a block gets executed, where any defined variable that is neither zero nor an
empty string is treated as true.

Conditional statements
if

The if statement is straightforward ‐ if the given expression is true, the statement or statements will
be executed. Otherwise, they are skipped.

if (a === b) { |
' document.body.innerHTML += "a equals b"; '

The if statement may also consist of multiple parts, incorporating else and else if sections. These keywords
are part of the if statement, and identify the code blocks that are executed, if the preceding condition is
false.

qif (a === b) {

i document.body.innerHTML += "a equals b";

i} else if (a === ¢) {

i document.body.innerHTML += "a equals c";

i} else {

'+ document.body.innerHTML += "a does not equal either b or c";

The while statement executes a given statement as long as a given expression is true. For example, the code
block below will increase the variable ¢ to 10:

while (c < 10) {
roCc =1,
T

This control loop also recognizes the break and continue keywords. The break keyword causes the
immediate termination of the loop, allowing for the loop to terminate from anywhere within the block.

The continue keyword finishes the current iteration of the while block or statement, and checks the
condition to see, if it is true. If it is true, the loop commences again.

do ... while
The do ... while statement executes a given statement as long as a given expression is true - however,

unlike the while statement, this control structure will always execute the statement or block at least once.
For example, the code block below will increase the variable ¢ to 10:

do { !
vooCc += 1 '

3 while (c < 10);

https://en.wikibooks.org/wiki/JavaScript/Print_version 32/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

As with while, break and continue are both recognized and operate in the same manner. break exits the
loop, and continue checks the condition before attempting to restart the loop.

for

The for statement allows greater control over the condition of iteration. While it has a conditional
statement, it also allows a pre-loop statement, and post-loop increment without affecting the condition. The
initial expression is executed once, and the conditional is always checked at the beginning of each loop. At
the end of the loop, the increment statement executes before the condition is checked once again. The
syntax is:

for (<initial expression>;<condition>;<final expression>)

The for statement is usually used for integer counters:

wvar c;
Efor (c =0; c <10; c +=1) {
v/

While the increment statement is normally used to increase a variable by one per loop iteration, it can
contain any statement, such as one that decreases the counter.

Break and continue are both recognized. The continue statement will still execute the increment statement
before the condition is checked.

A second version of this loop is the for .. in statement that has following form:

The order of the got elements is arbitrary. It should not be used when the object is of Array type

switch

The switch statement evaluates an expression, and determines flow control based on the result of the
expression:

switch(i) {
icase 1:
v

' break;
icase 2:
VT

i break;
default:
v

' break;

When 1 gets evaluated, it's value is checked against each of the case labels. These case labels appear in the
switch statement and, if the value for the case matches i, continues the execution at that point. If none of
the case labels match, execution continues at the default label (or skips the switch statement entirely, if
none is present.)

https://en.wikibooks.org/wiki/JavaScript/Print_version 33/60

https://en.wikibooks.org/wiki/JavaScript/Arrays

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Case labels may only have constants as part of their condition.

The break keyword exits the switch statement, and appears at the end of each case in order to prevent

undesired code from executing. While the break keyword may be omitted (for example, you want a block

of code executed for multiple cases), it may be considered bad practice doing so.
The continue keyword does not apply to switch statements.

Omitting the break can be used to test for more than one value at a time:

iswitch(i) {
icase 1:
case 2:
case 3:
// .
break;
case 4:
// ..
i break;
default:
T
break;

In this case the program will run the same code in case i equals 1, 2 or 3.

with

The with statement is used to extend the scope chain for a block[?] and has the following syntax:

Ewith (expression) {
' // statement

The with statement can help

= reduce file size by reducing the need to repeat a lengthy object reference, and
= relieve the interpreter of parsing repeated object references.

However, in many cases, this can be achieved by using a temporary variable to store a reference to the

desired object.

Cons

The with statement forces the specified object to be searched first for all name lookups. Therefore

= all identifiers that aren't members of the specified object will be found more slowly in a 'with' block

and should only be used to encompass code blocks that access members of the object.

= with makes it difficult for a human or a machine to find out which object was meant by searching the

scope chain.
= Used with something else than a plain object, with may not be forward-compatible.

Therefore, the use of the with statement is not recommended, as it may be the source of confusing bugs and

compatibility issues. See the "Ambiguity Con" paragraph in the "Description” section below for details.

https://en.wikibooks.org/wiki/JavaScript/Print_version

34/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Example

__

Evar area; E
var r = 10; !
with (Math) { :
| Math.PI*r*r |

v a = PI*r*r; // == a =
E X = r*cos(PI); // == a = r*Math.cos(Math.PI);
vy = r¥sin(P1/2); // == a = r*Math.sin(Math.PI1/2);

Functions and Objects

Functions

A function is an action to take to complete a goal, objective, or task. Functions allow you to split a
complex goal into simpler tasks, which make managing and maintaining scripts easier. A parameter or
argument is data which is passed to a function to effect the action to be taken. Functions can be passed
zero or more arguments. A function is executed when a call to that function is made anywhere within the
script, the page, an external page, or by an event. Functions are always guaranteed to return some value
when executed. The data passed to a function when executed is known as the function's input and the value
returned from an executed function is known as the function's output.

A JavaScript function is a code-block that can be reused inside an HTML document. A function created in
another file cannot be included for reuse. The function can be called via an event, or by manual calling.

Functions can be constructed in three main ways. We begin with three "Hello, World!" examples:

ifunction hello() {

Evar hello = function() {
v alert("Hello, World!"); '

war hello = new Function(
alert("Hello, World!"); 1

'alert("Hello, World!");'

Each function:

can be called with hello()

does not expect any arguments

performs an action to alert the user with a message
undefined is returned when execution is finished

The hello function can be changed to allow you to say hello to someone specific through the use of
arguments:

ﬁunction hello(who) { var hello = function(who) {

EE var hello = new Function('who',
+ alert("Hello, " + who + "1"); "

alert("Hello, " + who + "1"); H 'alert("Hello, " + who + "!");"'

__

https://en.wikibooks.org/wiki/JavaScript/Print_version 35/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world
Each function:

can be called with hello()

= expects one argument to be passed

= performs an action to alert the user with a message
undefined is returned when execution is finished

Each function can be called in several ways:

"5-“
I
—
=
o
~
&
s}
c
-
g
I
—
—
o
N
Q
—
—
~
=
=.
>3
o
o
=
.
s}
c
-
T5eS
I}
_
=
o
Q
©
©
=
<
~
=
B.
]
<%
o
=
—_
&
s}
c
-
N

__

Examples

function myFunction(string) {

E alert(string);

' document.innerHTML += string;
i

myFunction("hello");

The example would first:

= Define the myFunction function
= (Call the myFunction function with argument "hello"

The result:

= An alert message with 'hello’
= The string 'hello' being added to the end of the document's/page's HTML.

"Hello World!"

Let's put together the "Hello World!" code from above on a sample Web page. The page calls the function
once when the page is loaded, and whenever a button is clicked.

i <head><title>Some Page</title></head> !
i <body> ;
| <button id="msg">greeting</button> I
E <script type="text/javascript"> ;

function hello() {
alert("Hello World!");
¥

document.getElementById("msg").onclick = hello;

hello();

</script> E
+ </body> i
i</html> i

https://en.wikibooks.org/wiki/JavaScript/Print_version 36/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Extended "Hello World!"

In the following example, the function hello does "understand" whether it is called with a parametre or not,
and returns the greeting with this parametre, or with the word "World":

i<!DOCTYPE html>
i<html>
<head><title>Extended Hello World!</title></head>
<body>
<button id="msg">greeting</button>
<script type="text/javascript">
function hello(who) {
if ((who == null)
|| (who.toString().search("object") >= 0)) {

¥

alert("Hello " + who + "!");

}
document.getElementById("msg").onclick = hello;
hello("guy");

</script>

1 </body>

E who = "World"; E
i</html> E

Functions with arguments
Let's start with a quick example, then we will break it down.

function stepToFive(number) {
if (number > 5) {
number -= 1;

! !
v if (number < 5) { ;
: number += 1; |
Y !

return number;

This program takes a number as an argument. If the number is larger than 5, it subtracts one. If it's smaller
than five it adds one. Let's get down and dirty and look at this piece by piece.

This is similar to what we've seen before. We now have number following the function name. This is where
we define our arguments for later use, which is similar to defining variables, except in this case the
variables are only valid inside of the function.

__

https://en.wikibooks.org/wiki/JavaScript/Print_version 37/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Assuming that JavaScript is your first language, you might not know what this means. This takes one off

from the variable number. You can think of it as a useful shorthand for number

This returns the value of number from the function. This will be covered in more depth later on.

Here is an example of using this in a page.

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html lang="en">
<head>
<title>Some Page</title>
<script type="text/javascript">

‘ function stepToFive(number) {
E if (number > 5) {
! number -= 1;

: }

. if (number < 5) {
: number += 1;
5 }

return number;

' </script>
+ </head>

' <body>

| <p>

<script type="text/javascript">

var num = stepToFive(6);
alert(num);

E </script>
' </p>
' </body>

Evar num = stepToFive(6);

This is where the return statement in the function comes in handy. num here gets assigned the number 5,
since that is what stepToFive will return when it's given an argument of 6.

Event Handling

https://en.wikibooks.org/wiki/JavaScript/Print_version

38/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Event Handlers

An event occurs when something happens in a browser window. The kinds of events that might occur are
due to:

= A document loading
= The user clicking a mouse button
= The browser screen changing size

When a function is assigned to an event handler, that function is run when that event occurs.

A handler that is assigned from a script used the syntax '[element].[event] = [function];', where [element] is
a page element, [event] is the name of the selected event and [function] is the name of the function that
occurs when the event takes place.

For example:

This handler will cause the function clickHandler () to be executed whenever the user clicks the mouse
anywhere on the screen. Note that when an event handler is assigned, the function name does not end with
parentheses. We are just pointing the event to the name of the function. The clickHandler function is
defined like this:

Efunction clickHandler(evt) {
1 //some code here

By convention the event is represented by the variable 'evt'. In some browsers the event must be explicitly
passed to the function, so as a precaution it's often best to include a conditional to test that the evt variable
has been passed, and if it hasn't then to use an alternative method that works on those other browsers:

ﬁunction clickHandler(evt) { :
evt = evt || window.event; !
' //some code here '

This will cause the 1inkHandler () function to be executed when the user clicks the first link on the page.

Keep in mind that this style of handler assignment depends on the link's position inside the page. If another
link tag is added before this one, it will take over the handler from the original link. A best practice is to
maintain the separation of code and page structure by assigning each link an identifier by using the id
attribute.

https://en.wikibooks.org/wiki/JavaScript/Print_version 39/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

A handler assignment can then work regardless of where the element is positioned.

Events are actions that can be detected by JavaScript, and the event object gives information about the

event that has occurred. Sometimes we want to execute a JavaScript when an event occurs, such as when a
user clicks a button. Events are normally used in combination with functions, and the function will not be

executed before the event occurs! JavaScript event handlers are divided into two types:

1. Interactive event handlers- depends on user interactin with the HTML page ex. Clicking a button
2. Non-Interactive event handlers-does not need user interaction. Ex. onload

Event Attributes

Below is the event attributes that can be inserted into different HTML elements to define event actions. IE:

Internet Explorer, F: Firefox, O: Opera, W3C: W3C Standard.

Attribute The event occurs when... [IE F| O |W3C

onblur An element loses focus 3
onchange The content of a field changes |3
onclick Mouse clicks an object 3
ondblclick 'Mouse double-clicks an object|4

An error occurs when loading

onerror . 4
a document or an image

onfocus An element gets focus 3

onkeydown | A keyboard key is pressed 3

onkeypress A keyboard key is pressed 3

or held down
onkeyup A keyboard key is released 3

A page or image has

1 . .
onload finished loading 3
onmousedown | A mouse button is pressed 4
onmousemove | The mouse is moved 3

The mouse is moved
onmouseout 4
off an element

The mouse is moved
onmouseover 3
over an element

onmouseup | A mouse button is released 4
onresize A window or frame is resized |4
onselect Text is selected 3
onunload The user exits the page 3

Mouse/Keyboard Attributes:

https://en.wikibooks.org/wiki/JavaScript/Print_version

1

1
1
1

—_— | |
O O | O O

O | O | O O

Yes
Yes
Yes
Yes

Yes

Yes
Yes

Yes

Yes

Yes

Yes
Yes

Yes

Yes

Yes
Yes
Yes
Yes

40/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world
Property Description IE F O W3C
Returns whether or not the "ALT"
altKey key was pressed when an event 6 19 Yes
was triggered
button R@turns which mouse button was 6 19 Yes
clicked when an event was triggered
. Returns the horizontal coordinate of
clientX . . 19 Yes
the mouse pointer when an event was triggered
clienty Returns the vertical coordinate of th§ 6 19 Yes
mouse pointer when an event was triggered
n n
ctriKey Returns whether or not the CTRL key 6 19 Yes
was pressed when an event was triggered
n n
netaKey Returns whether or not the "meta .key 6 19 Yes
was pressed when an event was triggered
relatedTarget Returns the elqment related to the No!1!9 Yes
element that triggered the event
Returns the horizontal coordinate of the
screenX . . 6 19 Yes
mouse pointer when an event was triggered
Returns the vertical coordinate of the mouse
screenY . . 6 19 Yes
pointer when an event was triggered
n n
shiftkey Returns whether or not the S.HIFT key was 6 19 Yes
pressed when an event was triggered
Other Event Attributes:
Property Description IE F O/W3C
Returns a Boolean value that indicates
bubbles whether or not an event is a bubbling event No 119 |Yes
Returns a Boolean value that indicates
cancellable | whether or not an event can have No /19 Yes
its default action prevented
currentTarget Returns thg element whose event No 19 Yes
listeners triggered the event
Returns the element that triggered the event No |1 9 Yes
. R he ti in milli
timeStamp eturns the time stamp, in milliseconds 19 Yes

from the epoch (system start or event trigger)

Standard event handlers

https://en.wikibooks.org/wiki/JavaScript/Print_version

41/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world
Attribute Trigger

onabort Loading of image was interrupted
onblur Element loses focus
onchange Element gets modified
onclick Element gets clicked
ondblclick | Element gets double clicked
onerror An error occurred loading an element
onfocus An element received focus
onkeydown | A key was pressed when an element has focus
onkeypress | A keystroke was received by the element
onkeyup A key was released when the element has focus
onload An element was loaded
onmousedown | The mouse button was pressed on the element
onmousemove | The mouse pointer moves while inside the element
onmouseout | The mouse pointer was moved outside the element
onmouseover The mouse pointer was moved onto the element
onmouseup | The mouse button was released on the element.
onreset The form's reset button was clicked
onresize The containing window or frame was resized
onselect Text within the element was selected

onsubmit A form is being submitted
onunload The content is being unloaded (e.g. window being closed)

onscroll The user scrolls (in any direction and with any means).

Event Handlers as HTTML attributes

In HTML, JavaScript events can be included within any specified attribute - for example, a body tag can
have an onload event:

__

The content of the HTML event attributes is JavaScript code that is interpreted when the event is triggered,
and works very similarly to the blocks of JavaScript. This form of code is used when you want to have the
JavaScript attached directly to the tag in question.

This type of technique is called inline JavaScript, and can be seen as being a less desirable technique than
other unobtrusive JavaScript techniques that have previously been covered. The use of inline JavaScript
can be considered to be similar in nature to that of using inline CSS, where HTML is styled by putting CSS
in style attributes. This is a practice that is best avoided in favour of more versatile techniques.

Regular Expressions

https://en.wikibooks.org/wiki/JavaScript/Print_version 42/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

JavaScript implements regular expressions (regex for short) when searching for matches within a string. In

the following example, we are replacing the word be by the word exis? in a text:

"1 var shakespeareText = "To be or not to be? That is the question.";

i3 var regularExpression = new RegExp("be", "g");
4 var spoiltShakespeareText = shakespeareText.replace(regularExpression, "exist");

6 alert(spoiltShakespeareText);

It will display:

To exist or not to exist? That is the question.

As with other scripting languages, this allows searching beyond a simple letter-by-letter match, and can

even be used to parse strings in a certain format. Regular expressions most commonly appear in

conjunction with the string.match() and string.replace() methods. A regular expression object can be

created with the RegExp constructor. The first parameter is the pattern and the second the options:

51 var regularExpression = new RegExp("be", "g");

Compatibility

JavaScript's set of regular expressions follows the extended set. While copying a regex pattern from

JavaScript to another location may work properly, some older programs may not function as expected.

In the search term, \1 is used to back-reference a matched group, as in other implementations.

In the replacement string, $1 is substituted with a matched group in the search, instead of \1.
= Example: "abbc".replace(/(.)\1/g, "$1") => "abc"

| is magic, \| is literal

= (1S magic, \(1s literal

[|
—
=
o
w2

<
=
=
o
>
(9]
w2
—
-~J

I
D
—
N)

.....), (?<=...), (?<!...) are not available.

51 string = "Hello World!".match(/World/);
12 stringArray = "Hello World!".match(/1/g); // Matched strings returned in a string array
13 "abc".match(/a(b)c/)[1] => "b" // Matched subgroup is second member (=index "1") of resulting array

51 string = string.replace(/expression without quotation marks/g, "replacement");
12 string = string.replace(/escape the slash in this\/way/g, "replacement");
3 string = string.replace(...).replace (...). replace(...);

https://en.wikibooks.org/wiki/JavaScript/Print_version

https://en.wikibooks.org/wiki/Regular_Expressions

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Test

Modifiers

Modifier Note
g Global. The list of matches is returned in an array.
i Case-insensitive search
Multiline. If the operand string has multiple lines, A and $ match the beginning and end of
each line within the string, instead of matching the beginning and end of the whole string
m only.
= "a\nb\nc".replace(/~b$%$/g,"d") => "a\nb\nc"
= "a\nb\nc".replace(/~b$/gm,"d") => "a\nd\nc"
Operators
Operator Effect
\b Matches boundary of a word.
\w Matches an alphanumeric character, including " ".
\W | Negation of \w.
\s Matches a whitespace character (space, tab, newline, formfeed)
\S Negation of \s.
\d Matches a digit.
\D Negation of \d.

Function call

For complex operations, a function can process the matched substrings. In the following code, we are
capitalizing all the words. It can't be done by a simple replacement, as each letter to capitalize is a different

character:

51 var capitalize = function(matchobject) {

P2 var groupl = matchobject.replace(/A(\W)[a-zA-Z]+$/g, "$1");

'3 var group2 = matchobject.replace(/AM\W([a-zA-Z])[a-zA-Z]+$/g, "$1");
V4 var group3 = matchobject.replace(/AM\W[a-zA-Z]([a-zA-Z]+)$/g, "$1");
1 5 return groupl + group2.toUpperCase() + group3;

16 };

' 7

' 8 var shakespeareText = "To be or not to be? That is the question.";

'9

110 var spoiltShakespeareText = shakespeareText.replace(/\W[a-zA-Z]+/g, capitalize);
11

hz alert(spoiltShakespeareText);

It will display:

https://en

.wikibooks.org/wiki/JavaScript/Print_version

44/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

To Be Or Not To Be? That Is The Question.

The function is called for each substring. Here is the signature of the function:

function (<matchedSubstring>[, <capturel>, ...<captureN>, <indexInText>, <entireText>]) {

return <stringThatWillReplacelnText>;

= The first parameter is the substring that matches the pattern,

= The next parameters are the captures in the substrings. There are as many parameters as there are
captures,

= The next parameter is the index of the beginning of the substring starting from the beginning of the
text,

= The last parameter is a remainder of the entire text,

= The return value will be put in the text instead of the matching substring.

See also

= Perl Regular Expressions Reference - a chapter devoted to regular expressions in a book about the
Perl programming language.
= Regular Expressions - a Wikibook dedicated to regular expressions.

External links

= JavaScript RegExp Object (https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global Objects/RegExp) at MDN.

= JavaScript RexExp Tester (http://www.regular-expressions.info/javascriptexample.html)

= Regular Expressions in JavaScript
(http://developer.mozilla.org/en/JavaScript/Guide/Regular Expressions) at mozilla.org

Optimization

JavaScript Optimization

Optimization Techniques

= High Level Optimization
= Algorithmic Optimization (Mathematical Analysis)
= Simplification

= Low Level Optimization
= Loop Unrolling
= Strength Reduction

https://en.wikibooks.org/wiki/JavaScript/Print_version 45/60

https://en.wikibooks.org/wiki/Perl_Programming/Regular_Expressions_Reference
https://en.wikibooks.org/wiki/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
http://www.regular-expressions.info/javascriptexample.html
http://developer.mozilla.org/en/JavaScript/Guide/Regular_Expressions

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

= Duff's Device
= Clean Loops

= External Tools & Libraries for speeding/optimizing/compressing JavaScript code
Common Mistakes and Misconceptions

String concatenation

Strings in JavaScript are immutable objects. This means that once you create a string object, to modify it,
another string object must theoretically be created.

Now, suppose you want to perform a ROT-13 on all the characters in a long string. Supposing you have a
rot13() function, the obvious way to do this might be:

"the original string";

for(i = 0; i < s1.length; i++) { ;
i s2 += rot13(s1.charAt(i)); E

Especially in older browsers like Internet Explorer 6, this will be very slow. This is because, at each
iteration, the entire string must be copied before the new letter is appended.

One way to make this script faster might be to create an array of characters, then join it:

__

Evar s1 = "the original string";
'var a2 = new Array(s1.length);
wvar s2 = "";

for (i

0; i < s1.length; i++) {

i a2[i] = rot13(s1.charAt(i));

Internet Explorer 6 will run this code faster. However, since the original code is so obvious and easy to
write, most modern browsers have improved the handling of such concatenations. On some browsers the
original code may be faster than this code.

A second way to improve the speed of this code is to break up the string being written to. For instance, if
this 1s normal text, a space might make a good separator:

war s1 = "the original string";
var c;
var st
wvar s2
.

for(i = 0; i < s1.length; i++) {
i ¢ = rot13(s1.charAt(i));
vost += ¢

L if(c == ") o

. s2 += st;

st

https://en.wikibooks.org/wiki/JavaScript/Print_version 46/60

https://en.wikipedia.org/wiki/ROT-13

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

This way the bulk of the new string is copied much less often, because individual characters are added to a

smaller temporary string.

A third way to really improve the speed in a for loop, is to move the [array].length statement outside the
condition statement. In face, every occurrence, the [array].length will be re-calculate For a two occurences

loop, the result will not be visible, but (for example) in a five thousand occurence loop, you'll see the
difference. It can be explained with a simple calculation :

E// we assume that myArray.length is 5000
for(x = 0;x < myArray.length;x++){
'// doing some stuff

"x = 0" is evaluated only one time, so it's only one operation.

"x <myArray.length" is evaluated 5000 times, so it is 10,000 operations (myArray.length is an operation

and compare myArray.length with x, is another operation).

"x++" is evaluated 5000 times, so it's 5000 operations.

There is a total of 15 001 operation.

// we assume that myArray.length is 5000

for(x = 0, 1 = myArray.length; x < 1; x++){

E// doing some stuff

"x = 0" is evaluated only one time, so it's only one operation.
"l = myArray.length" is evaluated only one time, so it's only one operation.
"x <1" is evaluated 5000 times, so it is 5000 operations (I with x, is one operation).

"x++" is evaluated 5000 times, so it's 5000 operations.

There is a total of 10002 operation.

So, in order to optimize your for loop, you need to make code like this :

Evar s1 = "the original string";
var c;
wvar st
wvar s2
for(i = 0, 1 = s1.length; i < 1; i++) {
c = rot13(s1.charAt(i));
st += c;
if(c ==" ") {

s2 += st;

st = ""

Debugging

https://en.wikibooks.org/wiki/JavaScript/Print_version

47/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

JavaScript Debuggers

Firebug

= Firebug (http://www.getfirebug.com/) is a powerful extension for Firefox that has many development
and debugging tools including JavaScript debugger and profiler.

Venkman JavaScript Debugger

= Venkman JavaScript Debugger (http://www.hacksrus.com/~ginda/venkman/) (for Mozilla based
browsers such as Netscape 7.x, Firefox/Phoenix/Firebird and Mozilla Suite 1.x)

= Introduction to Venkman
(http://web.archive.org/web/20040704044520/devedge.netscape.com/viewsource/2002/venkman/01/)

= Using Breakpoints in Venkman
(http://web.archive.org/web/20040603085323/devedge.netscape.com/viewsource/2003/venkman/01/)

Internet Explorer debugging

= Microsoft Script Debugger (http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/sdbug/Html/sdbug_1.asp) (for Internet Explorer) The script debugger is from the Windows 98 and
NT era. It has been succeeded by the Developer Toolbar

= [nternet Explorer Developer Toolbar (http://www.microsoft.com/downloads/details.aspx?
FamilylD=2f465be0-94{d-4569-b3c4-dffdf19ccd99&displaylang=en)

= Microsofts Visual Web Developer Express (http://www.microsoft.com/express/vwd/) is Microsofts
free version of the Visual Studio IDE. It comes with a JS debugger. For a quick summary of its
capabilities see [1] (http://www.berniecode.com/blog/2007/03/08/how-to-debug-javascript-with-
visual-web-developer-express/)

= Internet Explorer 8 (http://www.microsoft.com/windows/Internet-explorer/) has a firebug-like Web
development tool by default (no add-on) which can be accessed by pressing F12. The Web
development tool also provides the ability to switch between the IE8 and IE7 rendering engines.

Safari debugging

Safari includes a powerful set of tools that make it easy to debug, tweak, and optimize a website for peak
performance and compatibility. To access them, turn on the Develop menu in Safari preferences. These
include Web Inspector, Error Console, disabling functions, and other developer features. The Web
Inspector gives you quick and easy access to the richest set of development tools ever included in a
browser. From viewing the structure of a page to debugging JavaScript to optimizing performance, the
Web Inspector presents its tools in a clean window designed to make developing web applications more
efficient. To activate it, choose Show Web Inspector from the Develop menu. The Scripts pane features the
powerful JavaScript Debugger in Safari. To use it, choose the Scripts pane in the Web Inspector and click
Enable Debugging. The debugger cycles through your page’s JavaScript, stopping when it encounters
exceptions or erroneous syntax. The Scripts pane also lets you pause the JavaScript, set breakpoints, and

evaluate local variables.[?]

JTF: JavaScript Unit Testing Farm

= JTF (http://jtf.ploki.info) is a collaborative website that enables you to create test cases that will be
tested by all browsers. It's the best way to do TDD and to be sure that your code will work well on all
browsers.

jsUnit

https://en.wikibooks.org/wiki/JavaScript/Print_version 48/60

http://www.getfirebug.com/
http://www.hacksrus.com/~ginda/venkman/
http://web.archive.org/web/20040704044520/devedge.netscape.com/viewsource/2002/venkman/01/
http://web.archive.org/web/20040603085323/devedge.netscape.com/viewsource/2003/venkman/01/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sdbug/Html/sdbug_1.asp
http://www.microsoft.com/downloads/details.aspx?FamilyID=2f465be0-94fd-4569-b3c4-dffdf19ccd99&displaylang=en
http://www.microsoft.com/express/vwd/
http://www.berniecode.com/blog/2007/03/08/how-to-debug-javascript-with-visual-web-developer-express/
http://www.microsoft.com/windows/Internet-explorer/
http://jtf.ploki.info/

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

= jsUnit (http://www.jsunit.net/)

built-in debugging tools

Some people prefer to send debugging messages to a "debugging console" rather than use the alert()
function[2] (http://osteele.com/archives/2006/03/inline-console)[3]
(http://www.webreference.com/js/column108/5.html)[4] (http://www.experts-
exchange.com/Web/Web_Languages/JavaScript/Q 21380186.html). Following is a brief list of popular
browsers and how to access their respective consoles/debugging tools.

Firefox: Ctr1+Shift+K opens an error console.

Opera (9.5+): Tools >> Advanced >> Developer Tools opens Dragonfly.

Chrome: Ctr1+Shift+J opens chrome's "Developer Tools" window, focused on the "console" tab.
Internet Explorer: F12 opens a firebug-like Web development tool that has various features including
the ability to switch between the IES and IE7 rendering engines.

Safari: Cmd+A1t+C opens the WebKit inspector for Safari.

Common Mistakes

Carefully read your code for typos.

Be sure that every "(" is closed by a ")" and every "{" is closed by a "}".

Trailing commas in Array and Object declarations will throw an error in Microsoft Internet Explorer
but not in Gecko-based browsers such as Firefox.

// Object
var obj = {
'foo' : 'bar',
‘color' : 'red', //trailing comma

I

// Array
var arr = [
'foo',
'bar', //trailing comma

Remember that JavaScript is case sensitive. Look for case related errors.

Don't use Reserved Words as variable names, function names or loop labels.

Escape quotes in strings with a "\" or the JavaScript interpreter will think a new string is being
started, 1.e:

atert(‘He's—eatingfood)+ should be

alert('He\'s eating food'); or
alert("He's eating food");

When converting strings to numbers using the parselnt function, remember that "08" and "09" (e.g.
in datetimes) indicate an octal number, because of the prefix zero. Using parselnt using a radix of 10
prevents wrong conversion. var n = parseInt('09',10);

Remember that JavaScript is platform independent, but is not browser independent. Because there
are no properly enforced standards, there are functions, properties and even objects that may be
available in one browser, but not available in another, e.g. Mozilla / Gecko Arrays have an indexOf{()
function; Microsoft Internet Explorer does not.

Debugging Methods

https://en.wikibooks.org/wiki/JavaScript/Print_version 49/60

http://www.jsunit.net/
http://osteele.com/archives/2006/03/inline-console
http://www.webreference.com/js/column108/5.html
http://www.experts-exchange.com/Web/Web_Languages/JavaScript/Q_21380186.html
https://en.wikipedia.org/wiki/Opera_Dragonfly
https://en.wikipedia.org/wiki/Microsoft_Internet_Explorer
https://en.wikibooks.org/wiki/JavaScript/Reserved_Words
https://en.wikipedia.org/wiki/Platform_(computing)
https://en.wikipedia.org/wiki/web_browser
https://en.wikipedia.org/wiki/Microsoft_Internet_Explorer

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Debugging in JavaScript doesn't differ very much from debugging in most other programming languages.
See the article at Computer Programming Principles/Maintaining/Debugging.

Following Variables as a Script is Running

The most basic way to inspect variables while running is a simple alert() call. However some development
environments allow you to step through your code, inspecting variables as you go. These kind of
environments may allow you to change variables while the program is paused.

Browser Bugs

Sometimes the browser is buggy, not your script. This means you must find a workaround.

Browser bug reports (http://www.quirksmode.org/bugreports/)

browser-dependent code

Some advanced features of JavaScript don't work in some browsers.

Too often our first reaction is: Detect which browser the user is using, then do something the cool way if
the user's browser is one of the ones that support it. Otherwise skip it.

Instead of using a "browser detect", a much better approach is to write "object detection" JavaScript to
detect if the user's browser supports the particular object (method, array or property) we want to use.[5]
(http://www.quirksmode.org/js/support.html) [6] (http://pageresource.com/jscript/jobdet.htm)

To find out if a method, property, or other object exists, and run code if it does, we write code like this:

wvar el = null;

if (document.getElementById) {

E // modern technique

' el = document.getElementById(id);

'+ else if (document.all) {

. // older Internet Explorer technique

i el = document.all[id];

} else if (document.layers) {

// older Netscape Web browser technique
' el = document.layers[id];

References

1. "typeof" (in English) (HTML). Mozilla Corporation. 2014-11-18. Archived from the original on
2014-11-18. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof.
Retrieved 2015-03-05.

2. Sheppy, Shaver et al. (2014-11-18). "with" (in English) (HTML). Mozilla. Archived from the
original on 2014-11-18. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/with. Retrieved 2015-03-18.

3. "Safari - The best way to see the sites." (in English) (HTML). Apple.
http://www.apple.com/safari/features.html#developer. Retrieved 2015-03-09.

Further reading

= "JavaScript Debugging" (http://www.mozilla.org/docs/web-developer/js/debugging/) by Ben
https://en.wikibooks.org/wiki/JavaScript/Print_version 50/60

https://en.wikibooks.org/wiki/Computer_Programming_Principles/Maintaining/Debugging
http://www.quirksmode.org/bugreports/
https://en.wikibooks.org/wiki/Microsoft_Certified_Professional_Developer/Exam_70-528/Web-Based_Client_Development/Program_a_Web_application#Detect_browser_types_in_Web_Forms.
http://www.quirksmode.org/js/support.html
http://pageresource.com/jscript/jobdet.htm
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof
https://developer.mozilla.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof
https://developer.mozilla.org/en-US/profiles/Sheppy
https://developer.mozilla.org/en-US/profiles/Shaver
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with
https://developer.mozilla.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with
http://www.apple.com/safari/features.html#developer
http://www.apple.com/safari/features.html#developer
http://www.mozilla.org/docs/web-developer/js/debugging/

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Bucksch

DHTML

DHTML (Dynamic HTML) is a combination of JavaScript, CSS and HTML.

alert messages

<script type="text/javascript">
! alert('Hello World!");
</script>

<script type="text/javascript">
' prompt('What is your name?");
</script>

<script type="text/javascript">
iconfirm('Are you sure?');
i</script>

This will give a simple confirmation message.

Javascript Button and Alert Message Example:

Sometimes it is best to dig straight in with the coding. Here is an example of a small piece of code:

E<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

i<html lang="en">
i <head>

i <title>"THE BUTTON" - Javascript</title>

: <script type="text/javascript">

E x = 'You have not pressed "THE BUTTON"'

' function bomb() {

, alert('0-GOD NOOOOO, WE ARE ALL DOOMED!!');
. alert('10");

: alert('9');

5 alert('8');

! alert('7');

' alert('6');

! alert('5'");

. alert('4');

: alert('3");

E alert('2');

! alert('1');

' alert('!BOOM!");

! alert('Have a nice day. :-)');

x = 'You pressed "THE BUTTON" and I told you not to!’;

}
</script>
<style type="text/css">
body {
background-color:#00aac5;

https://en.wikibooks.org/wiki/JavaScript/Print_version

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

E color:#000

: }

‘ </style>

i </head>

‘ <body>

v <div>

! <input type="button" value="THE BUTTON - Don't Click It" onclick="bomb()">

! <input type="button" value="Click Here And See If You Have Clicked ''THE BUTTON''" onclick="alert(x)"
: </div>

H <p>

E This script is dual-licensed under both, <a href="http://www.wikipedia.org/wiki/GNU_Free_Documentatior
! </p>

' </body>

'</html>

g

What has this code done? Well when it loads it tells what value the variable 'x' should have. The next code
snippet is a function that has been named "bomb". The body of this function fires some alert messages and
changes the value of 'x'.

The next part is mainly HTML with a little javascript attached to the INPUT tags. "onclick" property tells
its parent what has to be done when clicked. The bomb function is assigned to the first button, the second
button just shows an alert message with the value of x.

Javascript if() - else Example

E<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
i<html lang="en">
<head>
<title>The Welcome Message - Javascript</title>
<script type="text/javascript">
function wlcmmsg() {

E name = prompt('What is your name?', '');

' correct = confirm('Are you sure your name is ' + name + ' ?');

' if (correct == true) { !
. alert('Welcome ' + name); |
: } else { X
E wlcmmsg(); E
: ¥ :
: } :
' </script> :
: <style type="text/css"> '
: body { |
E background-color :#00aac5; E
! color:#000 !
: } :
! </style> i
i </head> .
E <body onload="wlcmmsg()" onunload="alert('Goodbye ' + name)">

' <p> |
E This script is dual-licensed under both, <a href:"http://www.wikipedia.org/wiki/GNU_Free_Documentatioﬁ
: </p> :
i </body> '
i</html> i

Two Scripts

We are going back to the first example. But adding more to the script by also adding a different welcome
message. This time a person is made to enter a name. They are also asked if they want to visit the site.
Some CSS has also been added to the button.

E<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">

https://en.wikibooks.org/wiki/JavaScript/Print_version 52/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

<head>
<title>"THE BUTTON" - Javascript</title>
<script type="text/javascript">
// global variable x
x = 'You have not pressed "THE BUTTON"';

function bomb() {
alert('0-GOD NOOOOO, WE ARE ALL DOOMED!!');
alert('3');
alert('2');
alert('1'");
alert('!BOOM!");
alert('Have a nice day. :-)");
X = 'You pressed "THE BUTTON" and I told you not too!"';
¥
</script>
<style type="text/css">
body {
background-color:#00aac5;
color:#000
¥
</style>
</head>
<body onload="welcome()">
<script type="text/javascript">
function welcome() {

var name = prompt('What is your name?', '');
if (name == "" || name == "null") {
alert('You have not entered a name');
welcome();
return false;
}
var visit = confirm('Do you want to visit this website?")
if (visit == true) {
alert('Welcome ' + name);
} else {
window.location=history.go(-1);
}
}
</script>
<div>

<input type="button" value="THE BUTTON - Don't Click It" onclick="bomb()" STYLE="color: #ffdd00; backg
<input type="button" value="Click Here And See If You Have Clicked ''THE BUTTON''" onclick="alert(x)"3
</div> :
<p> :
This script is dual-licensed under both, <a href:"http://www.wikipedia.org/wiki/GNU_Free_Documentatioﬁ
</p> |

i </body> !
</html> |

__

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
%html lang="en">
<head>
<title>Calculator</title>
<script type="text/javascript">
function multi() {
var a = document.Calculator.nol.value;
var b = document.Calculator.no2.value;
var p = (a*b);
document.Calculator.product.value = p;
}

function divi() {
var d = document.Calculator.dividend.value;
var e = document.Calculator.divisor.value;
var q = (d/e);
document.Calculator.quotient.value = q;

}

function circarea() {
https://en.wikibooks.org/wiki/JavaScript/Print_version 53/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

. var r = document.Calculator.radius.value;
: pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421
148233786783165;
i var a = pi*(r*r);
document.Calculator.area.value = a;
var ¢ = 2*pi*r;
document.Calculator.circumference.value = c;

!
ol E
: </script> |
! <style type="text/css"> !
! body { :
' background-color:#00aac5; !
: color:#000 I
D s
5 label { 5
' float:left; '
' width:7em !
| } |
i </style> i
1 </head> E
1 <body> !
' <h1>Calculator</h1> '
' <form name="Calculator" action=""> !
‘ <fieldset> '
: <legend>Multiply</legend> ‘
i <input type="text" name="no1"> x <input type="text" name="no2">
E <input type="button" value="=" onclick="multi()">
' <input type="text" name="product"> '
! </fieldset> '
‘ <fieldset> i
‘ <legend>Divide</legend> '
: <input type="text" name="dividend"> + <input type="text" name="divisor"> i
E <input type="button" value="=" onclick="divi()">
' <input type="text" name="quotient"> '
! </fieldset> !
‘ <fieldset> '
‘ <legend>Area and Circumfrence of Circle</legend>
i <p>(Uses pi to 240 d.p)</p> i
E <div> E
' <label for="radius">Type in radius</label> <input type="text" name="radius" id="radius" value="">!
! </div> !
: <div> |
: <input type="button" value="=" onclick="circarea()"> :
‘ </div> ‘
E <div> E
' <label for="area">Area</label> <input type="text" name="area" id="area" value=""> '
! </div> !
: <div> |
' <label for="circumference">Circumference</label> <input type="text" name="circumference" id="circu
‘ </div> ‘
E </fieldset> E
! </form> |
' <p>Licensed under the GNU GPL.</p>
i </body> :
</html> E

Finding Elements

The most common method of detecting page elements in the DOM is by the
document.getElementById(id) method.

Simple Use

Let's say, on a page, we have:

https://en.wikibooks.org/wiki/JavaScript/Print_version 54/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Use of getElementsByTagName

Another way to find elements on a web page is by the getElementsByTagName(name) method. It returns an
array of all name elements in the node.

Let's say, on a page, we have:

%div id="myDiv"> E
<p>Paragraph 1</p> '
<p>Paragraph 2</p> i
<h1>An HTML header</h1> i
<p>Paragraph 3</p> i

</div> E

__

T TS T T T T T T T T TS T T TS E T TS TS T TS T ST s s T s EE T e EEE T 1

wvar myDiv = document.getElementById("myDiv"); // get the div

Evar myParagraphs = myDiv.getElementsByTagName('P'); //get all paragraphs inside the div E

E// for example you can get the second paragraph (array indexing starts from 0)

wvar mySecondPar = myParagraphs[1] !
[

Adding Elements

Basic Usage

Using the Document Object Module we can create basic HTML elements. Let's create a div.

Evar myDiv = document.createElement("div");

What if we want the div to have an ID, or a class?

Evar myDiv = document.createElement("div");

myDiv.id = "myDiv"; '

myDiv.class = "main"; !

And we want it added into the page? Let's use the DOM again

e 1

war myDiv = document.createElement("div");

myDiv.id = "myDiv"; i
myDiv.class = "main"; E
'‘document.documentElement.appendChild(myDiv);

https://en.wikibooks.org/wiki/JavaScript/Print_version 55/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

Further Use

So let's have a simple HTML page...

<html>

<head>

</head>

i<body bgcolor="white" text="blue">
i+ <h1> A simple Javascript created button </h1>
i <div id="button"></div>
i</body>

</html>

myButton = document.createElement("input");
myButton.type = "button";

%yButton.value = "my button";

placeHolder = document.getElementById("button");
placeHolder.appendChild(myButton);

i<html>

«<head>

i</head>

i<body bgcolor="white" text="blue">

i <h1> A simple Javascript created button </h1>
i <div id="button"></div>

i </body>

<script>

myButton = document.createElement("input");
myButton.type = "button";

myButton.value = "my button";

placeHolder = document.getElementById("button");
EplaceHolder.appendChild(myButton);

i</script>

i</html>

The page will now have a button on it which has been created via JavaScript.

Changing Elements

In JavaScript you can change elements by using the following syntax:

Here, the srcattribute of an image is changed so when the script is called, it changes the picture from

myPicture. jpg to otherPicture. jpg.

i/ /The HTML

E

'//The JavaScript
'‘document.getElementBvId("example").src="otherPicture.ipg":

https://en.wikibooks.org/wiki/JavaScript/Print_version

56/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

In order to change an element, you use its argument name for the value you wish to change. For example,
let's say we have a button, and we wish to change its value.

%yButton = document.getElementById("myButton"); //searches for and detects the input element from the ’myBui
myButton.value = "I'm a changed button"; //changes the value '

Another way to change or create an attribute is to use a method like
element.setAttribute("attribute"”, "value") or element.createAttribute("attribute",
"value"). Use setAttribute/code> to change a attribute that has been defined before.

i/ /The HTML !
i<div id="div2"></div> //Make a div with an id of div2 (we also could have made it with JavaScript)

//The Javascript X
wvar e = document.getElementById("div2"); //Get the element

@.setAttribute("id", "div3"); //Change id to div3

Evar e = document.createElement('div'); //Make a div element (we also could have made it with HTML)
ie.createAttribute("id", "myDiv"); //Set the id to "myDiv"

Removing Elements

In JavaScript, an element can only be deleted from its parent. To delete one, you have to get the element,

find its parent, and delete it using the removeChild method.!!

For example, in a HTML document that looks like

<div id="parent">
! <p id="child">I'm a child!</p>
i</div>

'/ get elements
wvar child = document.getElementById("child");
var parent = document.getElementById("parent");

https://en.wikibooks.org/wiki/JavaScript/Print_version 57/60

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

\// Delete child
parent. removeChild(child);

__

Instead of getting the parent element manually, you can use the parentNode property of the child to find its
parent automatically. The code for this on the above HTML document would look like

// Get the child element node
Evar child = document.getElementById("child");

E// Remove the child element from the document
ichild.parentNode.removeChild(child);

..

References

1. StackOverflow: JavaScript: remove element by id
(https://stackoverflow.com/questions/3387427/javascript-remove-element-by-id)

Code Structuring

Links

Links

Featured weblinks:

= JavaScript portal (http://developer.mozilla.org/en-US/docs/JavaScript) at developer.mozilla.org

= JavaScript Reference (http://developer.mozilla.org/en-US/docs/JavaScript/Reference) at
developer.mozilla.org

= JavaScript Guide (http://developer.mozilla.org/en-US/docs/JavaScript/Guide) at
developer.mozilla.org

= Gecko DOM Reference (http://mozilla.org/docs/dom/domref/dom shortTOC.html) at
developer.mozilla.org

= JavaScript Reference (http://msdn.microsoft.com/en-us/library/ie/yek4tbz0%28v=vs.94%?29.aspx) at
msdn.microsoft.com

= Wikipedia:JavaScript
= Wikipedia:ECMAScript
= Wikipedia:JavaScript engine

= Wikiversity: Topic:JavaScript
= Wikiversity: Advanced JavaScript

https://en.wikibooks.org/wiki/JavaScript/Print_version 58/60

https://stackoverflow.com/questions/3387427/javascript-remove-element-by-id
http://developer.mozilla.org/en-US/docs/JavaScript
http://developer.mozilla.org/en-US/docs/JavaScript/Reference
http://developer.mozilla.org/en-US/docs/JavaScript/Guide
http://mozilla.org/docs/dom/domref/dom_shortTOC.html
http://msdn.microsoft.com/en-us/library/ie/yek4tbz0%28v=vs.94%29.aspx
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/ECMAScript
https://en.wikipedia.org/wiki/JavaScript_engine
https://en.wikiversity.org/wiki/Topic:JavaScript
https://en.wikiversity.org/wiki/Advanced_JavaScript

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

JavaScript Tutorial (http://www.w3schools.com/js/) at w3schools.com

JavaScript Reference (http://www.w3schools.com/jsref/default.asp) at w3schools.com
About: Focus on JavaScript (http://javascript.about.com/) from Stephen Chapman at
javascript.about.com

ecmascript.org (http://www.ecmascript.org/)
ecma-international.org (http://www.ecma-international.org/)
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

Discussion forums, bulletin boards:

HTML, CSS and JavaScript (http://www.coderanch.com/forums/f-20/HTML-CSS-JavaScript) at
coderanch.com

JavaScript Workshop forums (http://jsworkshop.com/bb/) at jsworkshop.com

Forum: Client-side technologies (http://www.webxpertz.net/forums/forumdisplay.php/119-Client-
side-technologies) at webxpertz.net

More Web sites:

JavaScript tutorials (http://webreference.com/programming/javascript/) at webreference.com
Videos (http://www.youtube.com/results?hl=en&q=crockford%?20javascript) from w:Douglas
Crockford on JavaScript (http://javascript.crockford.com/)

JavaScript (http://www.epanorama.net/links/pc_programming.html#javascript) at epanorama.net
JavaScript Tutorials (http://www.pickatutorial.com/tutorials/javascript _1.htm) at pickatutorial.com
JavaScript Essentials (http://www.techotopia.com/index.php/JavaScript Essentials) at
techotopia.com - An online JavaScript book designed to provide Web developers with everything
they need to know to create rich, interactive and dynamic Web pages using JavaScript.

JavaScript Tutorials (http://www.yourhtmlsource.com/javascript/) at yourhtmlsource.com
www.quirksmode.org (http://www.quirksmode.org) - over 150 useful pages for CSS and Javascript
tips & cross-browser compatibility matrices.

Wiki: I wanna Learn JavaScript (http://c2.com/cgi/wiki?Iwannal.earnJavaScript) at c2.com - A list of
links to Web resources on JavaScript

Unobtrusive JavaScript (http://www.onlinetools.org/articles/unobtrusivejavascript/chapter1.html) at
onlinetools.org - a guide on how to write JavaScript so that your site degrades gracefully (i.e., if the
browser does not support or has turned off JavaScript, your site is still usable).

Useful Software Tools

A list of useful tools for JavaScript programmers.

Editors / IDEs

Adobe Brackets: Another browser-based editor by Adobe

Eclipse: The Eclipse IDE includes an editor and debugger for JavaScript

Notepad—++ (http://notepad-plus.sourceforge.net/uk/site.htm): A Great tool for editing any kind of
code, includes syntax highlighting for many programming languages.

Programmers' Notepad (http://www.pnotepad.org/): A general tool for programming many
languages.

Scripted (https://github.com/scripted-editor/scripted): An open source browser-based editor by
Spring Source

Sublime Text: One of the most used editors for HTML/CSS/JavaScript editing

https://en.wikibooks.org/wiki/JavaScript/Print_version 59/60

http://www.w3schools.com/js/
http://www.w3schools.com/jsref/default.asp
http://javascript.about.com/
http://www.ecmascript.org/
http://www.ecma-international.org/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.coderanch.com/forums/f-20/HTML-CSS-JavaScript
http://jsworkshop.com/bb/
http://www.webxpertz.net/forums/forumdisplay.php/119-Client-side-technologies
http://webreference.com/programming/javascript/
http://www.youtube.com/results?hl=en&q=crockford%20javascript
https://en.wikipedia.org/wiki/Douglas_Crockford
http://javascript.crockford.com/
http://www.epanorama.net/links/pc_programming.html#javascript
http://www.pickatutorial.com/tutorials/javascript_1.htm
http://www.techotopia.com/index.php/JavaScript_Essentials
http://www.yourhtmlsource.com/javascript/
http://www.quirksmode.org/
http://c2.com/cgi/wiki?IwannaLearnJavaScript
http://www.onlinetools.org/articles/unobtrusivejavascript/chapter1.html
https://en.wikipedia.org/wiki/Adobe_Brackets
https://en.wikipedia.org/wiki/Eclipse_(software)
http://notepad-plus.sourceforge.net/uk/site.htm
http://www.pnotepad.org/
https://github.com/scripted-editor/scripted
https://en.wikipedia.org/wiki/SublimeText

10/27/2015 JavaScript/Print version - Wikibooks, open books for an open world

= Web Storm or IntelliJ IDEA: both IDEs include and editor and debugger for JavaScript, IDEA also
includes a Java development platform

Engines and other tools

= JSLint: static code analysis for JavaScript

= jq (http://stedolan.github.io/jq/) - " 'iq' is like sed for JSON data "

= List of ECMAScript engines

= List of Really Useful Free Tools For JavaScript Developers
(http://www.w3avenue.com/2009/05/19/list-of-really-useful-free-tools-for-javascript-developers/)

Retrieved from "https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version&oldid=2771136"

= This page was last modified on 26 February 2015, at 15:24.
= Text is available under the Creative Commons Attribution-ShareAlike License.; additional terms
may apply. By using this site, you agree to the Terms of Use and Privacy Policy.

https://en.wikibooks.org/wiki/JavaScript/Print_version 60/60

https://en.wikipedia.org/wiki/WebStorm
https://en.wikipedia.org/wiki/IntelliJ_IDEA
https://en.wikipedia.org/wiki/Jslint
http://stedolan.github.io/jq/
https://en.wikipedia.org/wiki/List_of_ECMAScript_engines
http://www.w3avenue.com/2009/05/19/list-of-really-useful-free-tools-for-javascript-developers/
https://en.wikibooks.org/w/index.php?title=JavaScript/Print_version&oldid=2771136
https://creativecommons.org/licenses/by-sa/3.0/
https://wikimediafoundation.org/wiki/Terms_of_Use
https://wikimediafoundation.org/wiki/Privacy_policy

