
Chapter 4

Fourier Sampling & Simon’s

Algorithm

4.1 Reversible Computation

A quantum circuit acting on n qubits is described by an 2n × 2n unitary
operator U . Since U is unitary, UU † = U †U = I. This implies that each
quantum circuit has an inverse circuit which is the mirror image of the original
circuit and which carries out the inverse operator U †.

The circuits for U and U † are the same size and have mirror image gates.
Examples:

H = H†

CNOT = CNOT†

Rθ = R†
−θ
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4.2 Simulating Classical Circuits

Let us first consider whether given any classical circuit there is an equivalent
quantum circuit. More concretely, suppose there is a classical circuit that
computes a function f(x) ∈ {0, 1}m on input x ∈ {0, 1}n, is there a quantum
circuit that does the same? Obviously such a quantum circuit must map
computational basis states to computational basis states (i.e. it must map
each state of the form |x� to the state |f(x)�). A unitary transformation taking
basis states to basis states must be a permutation. (Indeed, if U |x� = |u� and
U |y� = |u�, then |x� = U−1 |u� = |y�.) Therefore we need the input, or
domain, to be the exact same number of bits as the range: m = n. What is
more, the function f(x) must be a permutation on the n-bit strings. Since
this must hold after every application of a quantum gate, it follows that if a
quantum circuit computes a classical function, then it must be reversible: it
must have an inverse.

How can a classical circuit C which takes an n bit input x and computes
f(x) be made into a reversible quantum circuit that computes the same func-
tion? The circuit must never lose any information, so how could it compute
a function mapping n bits to m < n bits (e.g. a boolean function, where
m = 1)?

The solution to this problem is to have the circuit take the n input qubits
in the state |x� and send them to |x�, while in the process taking some m
qubits in the |0� state to |f(x)�. Then the inverse map is simple: the n-bit
string |x� goes back to x, and |f(x)� goes to an m bit string of 0’s: |0�.

However, this is not always perfectly easy, some times to make the circuit
work it needs scratch qubits in the input. A scratch qubit is a qubit that
starts out in the |0� state, and ends in the |0� state. Its purpose is to be used
in computations inside of the circuit. Of course, since the quantum circuit
does not alter these qubits, the inverse circuit also leaves them alone. While
these bits are a necessary ingredient to a reversible quantum circuit, they are
not the main character and are often let out of circuit diagrams. Take a look
at Figure 4.2 for the full picture.

How is this done? It is a fact that any classical AND and OR gates can
be simulated with a C-SWAP gate and some scratch |0� qubits (Figure 4.2).
For example, if we want to make a∧ b, then we input a as the control bit and
b as one of the swap bits, with c = 0 as the other swap bit. In the end, we
measure the third register where c went in, and this will be a ∧ b Now look
what happens: if a = b = 1, then b and c swap, so that the third register reads
b = 1: true! If a is one but b is 0, then b and c swap, but the third register is
b = 0: false. And clearly, if a = 0 then so to will read the third register.
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Figure 4.1: Note that the input and output have the same number of qubits
in the reversible quantum circuit.

If we construct the corresponding reversible circuit (lets call it RC), we
have a small problem. The CSWAP gates end up converting input scratch
bits to garbage. Why is this a problem? We have our output |f� (x), don’t
we. This seems like it should be good enough. But in fact it is not. All the
junk that gets made in the in-between steps can be entangled with the output
qubits. Thus if it gets measured, it will screw alter our function. Furthermore,
there is a principle which states that any unmeasured, thrown away qubits are
just as good as measured. This is called the principle of deferred measurement,
and it means that junk qubits are no good.

So how do we restore the scratch bits to 0 on output? We use the fact that
RC is a reversible circuit. We use the CSWAP gates, for example, to produce
the output f(x). We can then copy the output onto some scratch qubits,
which we will keep as our output. We then use the reverse of our circuit RC
on the input, f(x), and the junk to turn it all back to 0’s and x. But because
we copied f(x) in the middle, we keep it at the end.

The sequence of steps for the overall circuit is

(x, 0k, 0m, 0k, 1)
C

�
−→ (x, y, garbagex, 0

k, 1)
copy y
−→ (x, y, garbagex, y, 1)

(C�)−1

−→ (x, 0k, 0m, y, 1) .
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Overall, this gives us a clean reversible circuit Ĉ corresponding to C.

4.3 Fourier Sampling

Consider a quantum circuit acting on n qubits, which applies a Hadamard
gate to each qubit. i.e. the circuit applies the unitary transformation H⊗n,
or H tensored with itself n times.

Another way to define this unitary transformation H2n is as the 2n × 2n

matrix in which the (x, y) entry is 2−n/2 (−1)x·y.
Applying the Hadamard transform (or the Fourier transform over Zn

2 ) to
the state of all zeros gives an equal superposition over all 2n states

H2n |0 · · · 0� =
1

√
2n

�

x∈{0,1}n
|x� .

In general, applying the Hadamard transform to the computational basis
state |u� yields:

H2n |u� =
1

√
2n

�

x∈{0,1}n
(−1)u·x |x�

We define the Fourier sampling problem as follows: Input an n qubit state
|φ� =

�
x∈{0,1}n αx |x�. Compute H⊗n |φ� and measure the resulting state�

y
α̂y |y� to output y with probability |α̂y|

2.
Fourier sampling is probably the most fundamental primitive we use in

quantum algorithms (where in place of the Hadamard transform, we will use
a more general form of type of Fourier transform). Fourier sampling is easy
on a quantum computer, but appears to be difficult to carry out on a classical
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computer. In what follows, we will explore some of the power of Fourier
sampling.

4.4 Phase State

We will now see how to set up an interesting state for fourier sampling. Given
a classical circuit for computing a boolean function f : {0, 1}n → {0, 1}, this
procedure due to Deutsch and Jozsa, shows how to transform it into a quantum
circuit that produces the quantum state |φ� = 1/2n/2

�
x
(−1)f(x) |x�.

The quantum algorithm to carry out this task uses two quantum registers,
the first consisting of n qubits, and the second consisting of a single qubit.

• Start with the registers in the state |0n� |0�

• Compute the Fourier transform on the first register to get
�

x∈{0,1}n |x�⊗
|0�.

• Compute f to get
�

x
|x� |f(x)�.

• Apply a conditional phase based on f(x) to get
�

x
(−1)f(x) |x� |f(x)�.

• Uncompute f to get
�

x
(−1)f(x) |x� ⊗ |0�.

4.5 Extracting n bits with 2 evaluations of

Boolean Function

Suppose we are given a black box (or an obfuscated classical circuit) that
computes the function function fs : {0, 1}n → {1,−1}, where f(x) = s · x.
s · x denotes the dot product s1x1 + · · ·+ snxnmod2. The challenge is to use
this black box to efficiently determine s.

It is easy to see how to perform this task with n queries to the black
box: simply input in turn the n inputs x of Hamming weight 1. The outputs
of the black box are the bits of s. Since each query reveals only one bit of
information, it is clear that n queries are necessary.

Remarkably there is a quantum algorithm (the base case of the Bernstein-
Vazirani algorithm) that requires only two (quantum) queries to the black
box:

• Use the black box to set up the phase state |φ� = 1/2n/2
�

x
(−1)f(x) |x�.
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• Apply the Fourier transform H⊗n and measure. The outcome of the
measurement is s.

To see that the outcome of the measurement is s, recall that H⊗n |s� =
1/2n/2

�
x
(−1)s·x |x� = |φ�. Since H⊗n is its own inverse, it follows that

H⊗n |φ� = |s�.
More generally, the transformation H⊗n maps the standard basis |s� to

the fourier basis |φs� = 1/2n/2
�

x
(−1)s·x |x� and vice-versa.

We have shown that a quantum algorithm can be more efficient than any
probabilistic algorithm in terms of the number of queries. One way to use this
difference in the number of queries in order to demonstrate a gap between
quantum and probabilistic algorithms is to make the queries very expensive.
Then the quantum algorithm would be n/2 times faster than any probabilistic
algorithm for the given task. But this does not help us in our goal, which is
to show that quantum computers violate the extended Church-Turing thesis.
The idea behind proving a superpolynomial gap (which we will outline below)
is to make each query itself be the answer to a Fourier sampling problem.
Now each query itself is much easier for the quantum algorithm than for any
probabilistic algorithm. Carrying this out recursively for log n levels leads to
the superpolynomial speedup for quantum algorithms.

4.6 Recursive Fourier Sampling

Our goal is to give a superpolynomial separation between quantum computa-
tion and classical probabilistic computation. The idea is to define a recursive
version of the fourier sampling problem, where each query to the function
(on an input of length n) is itself the answer to a recursive fourier sampling
problem (on an input of length n/2). Intuitively a classical algorithm would
need to solve n subproblems to solve a problem on an input of length n
(since it must make n queries). Thus its running time satisfies the recurrence
T (n) ≥ nT (n/2) + O(n) which has solution T (n) = Ω(nlogn). The quantum
algorithm needs to make only two queries and thus its running time satisfies
the recurrence T (n) = 2T (n/2) +O(n), which solves to T (n) = O(n log n).

Here is how it works for two levels: we are given a black box computing a
function f : {0, 1}3n/2 → {0, 1}, with the promise that for every n bit string x,
the function fx : {0, 1}n/2 → {0, 1} defined by fx(y) = f(xy) (xy is denotes the
concatenation of x and y) satisfies fx(y) = sx · y for some sx ∈ {0, 1}n/2. We
are also given a black box g : {0, 1}n/2 → {0, 1} which satisfies the condition
that if we construct a boolean function h on n bits as h(x) = g(sx), then
h(x) = s · x for some n-bit string s. The challenge is to figure out s.
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The proof that no classical probabilistic algorithm can reconstruct s is
somewhat technical, and establishes that for a random g satisfying the promise,
any algorithm (deterministic or probabilistic) that makes no(logn) queries to
g must give the wrong answer on at least 1/2 − o(1) fraction of g’s. This
lemma continues to hold even if the actual queries are chosen by a helpful(but
untrusted) genie who knows the answer.

For those with a background in computational complexity theory – this
establishes that relative to an oracle BQP �⊆ MA. MA is the probabilistic
generalization of NP . It is conjectured that recursive fourier sampling does
not lie in the polynomial hierarchy. In particular, it is an open question to
show that, relative to an oracle, recusive fourier sampling does not lie AM or
in BPPNP .

4.7 Simon’s Algorithm

The Problem
Suppose we are given a black box for computing a 2-to-1 function f :

Z
n

2 → Z
n

2 (from n-bit strings to n-bit strings), with the promise that there is
a non-zero string s ∈ Z

n

2 \ {0} such that

for all x �= y, f(x) = f(y) if and only if x⊕ y = s.

Here ⊕ is the bitwise direct sum modulo 2. For example,
1 1 0 1

⊕ 0 1 1 1
1 0 1 0

or
0 1

⊕ 0 1
0 0

.

A quick example of such a function with n = 3 is

f(x) =






001 if x = 000 or 011

010 if x = 001 or 010

100 if x = 111 or 100

111 if x = 110 or 101

where s = 011.
The problem of Simon’s algorithm is to determine s.
Classically
A simple way to solve this problem classically would be to randomly input

values to the black box until we find two inputs that produce the same output,
and compute their direct sum. But there are 2n−1 possible outputs, so despite
the help from the birthday paradox, we expect it to take

√
2n−1 = 2(n−1)/2

attempts to find s: still exponential time.



44 CHAPTER 4. FOURIER SAMPLING & SIMON’S ALGORITHM

Furthermore, it can be shown that no classical computer can find s faster
than exponential time. We will use the power of quantum computing to find
a faster way.

Quantum
To utilize the power of quantum computing, we will access the function in

superposition. So suppose instead of a black box we are given the circuit Cf

for computing |f�, from which we can construct the unitary transformation
Uf :

|x�

|0�

|x�

|f(x)�

Uf

Figure 4.2: Black Box Circuit

The point here is that the input can be a superposition over all n-bit
strings

�
N−1
x=0 αx |x� (N = 2n), yielding the output

�
N−1
x=0 αx |x� |f(x)�. This

can be thought of as querying f in superposition.
Simon’s Algorithm consists of 3 main steps.
Step 1: Prepare the random superposition 1√

2
(|x0�+ |x0 ⊕ s�)

Step 2: Use Fourier sampling to produce a y such that y · s = 0
Step 3: Repeat until there are enough such y’s that we can classically

solve for s.
Now lets see the details on how to do each step.
Step 1: Prepare the random superposition 1√

2
(|x0�+ |x0 ⊕ s�)

First query the function with a uniform superposition of the n-bit strings.
To prepare this uniform superposition, start with the state |0� then apply the
Hadamard transform. With N = 2n, this is written:

|0� |0�
H

⊗n

−→

�
1

N

N−1�

x=0

|x� |0�

Next we will use the unitary transformation Uf to query f in uniform super-
position. �

1

N

N−1�

x=0

|x� |0�
Uf
−→

�
1

N

N−1�

x=0

|x� |f(x)�

Now what happens if we measure the second register containing |f(x)�?
It must collapse into |f(x0)� for some x0 ∈ Z

n

2 . But this reveals information
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about the first register, and it will also collapse into the pre-images of f(x0):
x0 and x0 ⊕ s.

�
1

N

N−1�

x=0

|x� |f(x)�
measure f
−→

1
√
2
(|x0�+ |x0 ⊕ s�) |f(x0)�

The first register is now the state 1√
2
(|x0�+ |x0 ⊕ s�) where x0 is a random

n-bit string. The challenge is to read off s from this superposition. We cannot
simply measure the state because the superposition will be destroyed, and the
result we get will have no information about s.

Step 2: Use Fourier sampling to find a y such that y · s = 0.
We now show that H⊗2( 1√

2
|x0� +

1√
2
|x0 ⊕ s� is a uniform superposition

over all states |y� such that y · s = 0. This means that Fourier sampling
( 1√

2
|x0�+

1√
2
|x0 ⊕ s� results in a uniform superposition of y such that y ·s = 0.

Recall that

H⊗n
|x� =

�
1

N

�

y

αy |y� where αy = (−1)x·y

So H⊗2 1√
2
(|x0�+ |x0 ⊕ s�) = 1

2

�
y
αy |y� where

αy =
1
√
2
(−1)x0·y + (−1)(x0⊕s)·y

=
1
√
2
(−1)x0·y(1 + (−1)s·y)

Now it is easy to see that if s · y = 0, αy = ±
1√
2
, but if s · y = 1, αy = 0.

Therefore when we measure the first register, we will measure a y such
that y · s = 0.

Step 3: Repeat until there are enough such y’s that we can classically
solve for s.

There are exactly n linearly independent values of y such that y · s =
y1s1 + y2s2 + · · · ynsn = 0, and one of these is the trivial solution y = 0.
Therefore, there are n−1 non-trivial, linearly independent solutions to y·s = 0.
But if y1 and y2 are linearly independent solutions, (y1+y2)·s = y1·s+y2·s = 0
so linear combinations of solutions are also solutions. This gives us a total of
2n−1 y’s such that y · s = 0. To solve for s, we need to find exactly n − 1
non-trivial, linearly independent y such that y · s = 0.

For example, if s = 010, then y0 = 000, y1 = 001, and y2 = 100 are linearly
independent solutions to y ·s = 0. But the linear combination y1+y2 = 101 is
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also a solution. We need only find two of {y1, y2, y1+y2} in order to classically
solve for s.

How long should we expect this to take? The probability that we fail on
the first run is the probability that we find y = 0, which is one value out of
2n−1. So P1 = 1/2n−1, where P1 denotes the probability of failing on the first
run. Lets call the first nontrivial solution y1.

We fail when looking for y2 if we find 0 or y1, so P2 = 2/2n−1 = 1/2n−2.
When looking for y3, we fail if we find any of {0, y1, y2, y1 + y2}, so P3 =
4/2n−1 = 1/2n−3. Carrying on in this way, the probability of failing to find yi
is Pi = 1/2n−i.

The chance that we fail up to and including yi can be approximated by
P < 1/2n−1 + 1/2n−2 + · · · + 1/2n−i. If we push this approximation all the
way to i = n − 1, we see that we fail with probability less than 1 (compute
the geometric sum). That’s not a strong enough approximation, so instead
notice that our probability of failure up to and including i = n − 2 is less
than 1/2. Then our probability of success up to the n − 2st run is greater
than 1/2. We find the final linearly independent term on the last run with
probability 1/2 (if you don’t believe this, notice that half of the solutions are
linear combinations that include yn−1). Finally our total probability of success
is P (success) > 1/2 ∗ 1/2 = 1/4. Therefore, we expect our process to take
O(n) steps (our limit says 4 by n runs of the algorithm should be enough for
success).

Simon’s algorithm is summed up by the following circuit.

|0�

|0� |f(x)�

H
Uf

H

Figure 4.3: Circuit for Simon’s Algorithm

In summary, the above circuit for Simon’s algorithm corresponds to the
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following sequence of transformations.

|0� |0�
H

⊗n

−→
1

√
2n

�

x

|x� |0�

Uf
−→

1
√
2n

�

x

|x� |f(x)�

measure
−→

1
√
2
(|x0�+ |x0 ⊕ s�)⊗ |f(x0)�

H
⊗n

−→
1

√
2n

�

y

αy |y� |f(x0)�

for some numbers αy.
As above, for each y, if s · y = 1, then αy = 0, whereas if s · y = 0, then

αy = (−1)x0·y
√
2.

When we observe the first register, we get a uniformly random y such that
s · y = s1y1 + · · ·+ snyn = 0. We repeat to collect more and more equations,
and recover s from n− 1 linearly independent equations.

Example

Let n = 2 and f(x) =

�
00 if x = 00 or 10

01 if x = 01 or 11
so that s = 10.

First, apply the Hadamard transform to prepare |x�, then Uf to prepare
|f(x)�

|0� |0�
H

⊗2

−→
1

2

3�

x=0

|x� |0�
Uf
−→

1

2

3�

x=0

|x� |f(x)�

Then measure the second register to finalize the first step of the process.
For the purpose of argument, lets suppose we measure f(x) = 01, so that
x0 = 01 and x0 ⊕ s = 11:

1

2

3�

x=0

|x� |f(x)�
measure
−→

1
√
2
(|01�+ |11�)⊗ |01�

We then impose the Hadamard transform to achieve:

1

2

1
√
2





1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1









0
1
0
1



 =
1
√
2





1
−1
0
0





We expect it will take 2 runs through the above process to measure y = 01.
Then the only nonzero solution for s is s = 10.


