Week 5 – part 5: Stochastic spike firing in integrate-and-fire models

Neuronal Dynamics: Computational Neuroscience of Single Neurons

Week 5 – Variability and Noise: The question of the neural code

Wulfram Gerstner
EPFL, Lausanne, Switzerland

- 5.1 Variability of spike trains
 - experiments
- 5.2 Sources of Variability?
 - Is variability equal to noise?
- 5.3 Three definitions of Rate code
 - Poisson Model
- 5.4 Stochastic spike arrival
 - Membrane potential fluctuations
- 5.5. Stochastic spike firing
 - subthreshold and superthreshold
5.1 Variability of spike trains
- experiments

5.2 Sources of Variability?
- Is variability equal to noise?

5.3 Three definitions of Rate code
- Poisson Model

5.4 Stochastic spike arrival
- Membrane potential fluctuations

5.5. Stochastic spike firing
- subthreshold and superthreshold
Neuronal Dynamics – review: Fluctuations of potential

Passive membrane

\[\tau \frac{d}{dt} u = -(u - u_{\text{rest}}) + RI(t) \]

→ Fluctuating potential

Fluctuating input current

\[I^{\text{syn}}(t) = I_0 + I^{\text{fluct}}(t) \]
Neuronal Dynamics – 5.5. Stochastic leaky integrate-and-fire

LIF

\[\tau \frac{d}{dt} u = -(u - u_{\text{rest}}) + RI(t) \]

\[I(t) = [I_o + I_{\text{noise}}] \]

IF \(u(t) = \Theta \) THEN \(u(t + \Delta) = u_r \)

effective noise current

noisy input/
diffusive noise/
stochastic spike arrival
stochastic spike arrival in I&F – interspike intervals
LIF with Diffusive noise (stochastic spike arrival)

Superthreshold vs. Subthreshold regime
Neuronal Dynamics – 5.5. Stochastic leaky integrate-and-fire

noisy input/ diffusive noise/ stochastic spike arrival

subthreshold regime:
- firing driven by fluctuations
- broad ISI distribution
- *in vivo* like
Neuronal Dynamics week 5—References and Suggested Reading

Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski, *Neuronal Dynamics: from single neurons to networks and models of cognition*. Ch. 7,8: Cambridge, 2014
