Quantum Mechanics & Quantum Computation

Umesh V. Vazirani University of California, Berkeley

Lecture 10: Quantum Factoring

Period Finding

M 1000 digit number.
M
$$n$$
 10¹⁰⁰⁰
 $v \sim \sqrt{M}$
 $\underline{\Upsilon}$ 500 digit number.
 $\overline{\Upsilon}$ inputs suffice to
See a cMision!
Birthlay paradox
 \sqrt{T} 250 degit number
 $\overline{JT} \sim 10^{250}$.

Quantum Mechanics & Quantum Computation

Umesh V. Vazirani University of California, Berkeley

Lecture 10: Quantum Factoring

Shor's Factoring Algorithm

$$N = 60 = 2^{2} \times 3 \times 5$$

$$P_{1}^{e_{1}} P_{2}^{e_{2}} \cdots P_{k}^{e_{k}}$$

$$N = P \cdot Q$$

$$RSA \quad crypto system$$

$$n = length of N in bits$$

$$O(2^{n})$$

$$2^{O(2\sqrt{n})}$$

$$750 \quad bit$$

$$200 \quad decimal \quad digits.$$

$$N = 21$$

$$a = b \pmod{N}$$

$$b = q N + \underline{a}$$

$$3 \equiv 24 \pmod{21}$$

14 = 35 (mod 21)
20 = -1 (mod 21)

* Anithmetric (mod N) efficiently.
*
$$gcd(a, b)$$

 $gcd(15, 21) = 3.$
 $3 \times 5 \quad 3 \times 7$
Enclid's Alg: $21 = 1 \times 15 + 6$
 $15 = 2 \times 6 + 3$
 $6 = 2 \times 3 + 6$

Resources:

- Modular arithmetic.
- a = b (mod N). e.g. 3 = 15 (mod 12)
- "Algorithms" by Dasgupta, Papadimitriou, Vazirani

www.cs.berkeley.edu/~vazirani/algorithms.html

Chapter 1: Modular Arithmetic Chapter 2 (2nd half): Fast fourier transform Chapter 10: Quantum factoring.

$$N = 21$$

$$X^{2} \equiv 1 (m \cdot d \cdot 21)$$

$$\frac{X=1}{X=-1} \equiv 20 (m \cdot d \cdot 21)$$

$$X = -1 \equiv 20 (m \cdot d \cdot 21)$$

$$X^{2} \equiv 8 \times 8 = 64 (m \cdot d \cdot 21)$$

$$\equiv 1 (m \cdot d \cdot 21)$$

$$X = -8 \equiv 13 (m \cdot d \cdot 21)$$

$$X = -8 \equiv 13 (m \cdot d \cdot 21)$$

$$13^{2} \equiv 169 \equiv 1 (m \cdot d \cdot 21)$$

$$8^{2} \equiv 1 \mod 21$$

$$8^{2} - 1^{2} \equiv 0 \pmod{21}$$

$$21 \quad \text{divides} \quad (8+1)(8-1)$$

$$3 \times 7$$

$$gcd(21, 8+1) = 3$$

$$gcd(21, 7) = 7$$

$$21)$$
Find X:
$$x \equiv \pm 1 \pmod{N} \quad x \pm 1 \neq 0 \pmod{N}$$

$$K \equiv \pm 1 \pmod{N} \quad x \pm 1 \neq 0 \pmod{N}$$

$$N \quad \text{divides} \quad (X+1)(X-1)$$

$$N \quad \text{des act divider} \quad (X\pm 1)$$

$$gcd(N, X+1)$$

$$N = 21$$

$$X = 2$$

$$2^{\circ} \equiv 1 \pmod{21}$$

$$2^{\circ} \equiv 2 \pmod{21}$$

$$2^{\circ} \equiv 2 \pmod{21}$$

$$2^{\circ} \equiv 2 \pmod{21}$$

$$2^{\circ} \equiv 4 \pmod{21}$$

$$2^{\circ} \equiv 4 \pmod{21}$$

$$2^{\circ} \equiv 8 \pmod{21}$$

$$2^{\circ} \equiv 1 \pmod{21}$$

$$2^{\circ} \equiv 1 \pmod{21}$$

$$2^{\circ} \equiv 1 \pmod{21}$$

$$2^{\circ} \equiv 1 \pmod{21}$$

$$2^{\circ} \equiv 2^{3} \times 2^{3}$$

$$(2^{3})^{2} \equiv 1 \pmod{21}$$

$$x^{\circ} \equiv 2 \pmod{N}$$

$$(2^{3})^{2} \equiv 1 \pmod{21}$$

$$x^{\circ} \equiv 2 \pmod{N}$$

$$(x^{1/2})^{2} \equiv 1 \pmod{N}$$

$$(x^{1/2})^{2} \equiv 1 \pmod{N}$$

$$(x^{1/2})^{2} \equiv 1 \pmod{N}$$

Lemma: Let N be an odd composite, with at least two distinct prime factors, and let x be uniformly random between 0 and N-1. If gcd(x, N) = 1, then with probability at least $\frac{1}{2}$, the order r of x (mod N) is even, and $x^{r/2}$ is a nontrivial square root of 1 (mod N)

I = X (mod N)

N=21 x = 2Period = $\gamma = 6$ $(x^{7/3})^2 \equiv 1 \pmod{N}$

MC a = 0

$$M > 2\gamma^2 \qquad \frac{M}{T} > 2\underline{r}$$

$$M > 2 N^2$$
.

 $M > 2N^2$

Quantum Mechanics & Quantum Computation

Umesh V. Vazirani University of California, Berkeley

Lecture 10: Quantum Factoring

QFT Circuit

$$\begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{M-1} \end{bmatrix} = \frac{1}{\sqrt{M}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{M-1} \\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{2(M-1)} \\ \vdots & & & \\ 1 & \omega^j & \omega^{2j} & \cdots & \omega^{(M-1)j} \\ \vdots \\ 1 & \omega^{(M-1)} & \omega^{2(M-1)} & \cdots & \omega^{(M-1)(M-1)} \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_{M-1} \end{bmatrix}$$

m-1 qubits $\begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}$ $\mathbf{QFT}_{M/2}$

least significant bit

$$\begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{M-1} \end{bmatrix} = \frac{1}{\sqrt{M}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{M-1} \\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{2(M-1)} \\ \vdots & & & \\ 1 & \omega^j & \omega^{2j} & \cdots & \omega^{(M-1)j} \\ \vdots \\ 1 & \omega^{(M-1)} & \omega^{2(M-1)} & \cdots & \omega^{(M-1)(M-1)} \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_{M-1} \end{bmatrix}$$

FFT_M (input: $\alpha_0, \ldots, \alpha_{M-1}$, output: $\beta_0, \ldots, \beta_{M-1}$)

m-1 qubits $\begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}$ $\mathbf{QFT}_{M/2}$

least significant bit

