
Chapter 8

Observables

8.1 Observables

An observable is an operator that corresponds to a physical quantity, such as energy, spin, or
position, that can be measured; think of a measuring device with a pointer from which you can
read off a real number which is the outcome of the measurement. For a k-state quantum system,
observables correspond to k×k hermitian matrices. Recall that a matrixM is hermitian iffM † = M .
Since M is hermitian, it has an orthonormal set of eigenvectors |φj� with real eigenvalues λj . What
is the outcome of a measurement of the quantity represented by observable M on a quantum state
|ψ�? To understand this, let us write |ψ� = a0φ0 + · · · + ak−1φk−1 in the {|φj�}-basis. Now, the
result of the measurement must be some λj (this is the real number we read off our measurement
device) with probability |aj |2. Moreover, the state of the system is collapsed to |φj�.

This description of a measurement relates to what we described earlier while explaining the mea-
surement principle: there a measurement was specified by picking an orthonormal basis {|φj�}, and
the measurement outcome was j with probability |aj |2. The sequence of real numbers λj simply
provide a way of specifying what the pointer of the measurement device indicates for the j-th
outcome. Moreover, given any orthonormal basis |φj� and the sequence of real numbers λj , we

can reconstruct a hermitian matrix M as: M =
�

k−1
j=0 λj |φj� �φj |; in the {|φj�}-basis this is just a

diagonal matrix with the λj ’s on the diagonal.

For example, suppose we wish to measure a qubit in the |+� , |−�-basis, with measurement results
1 and −1 respectively. This corresponds to measuring the observable

M = (1) |+��+|+ (−1) |−��−|

=

�
1/2 1/2
1/2 1/2

�
−

�
1/2 −1/2
−1/2 1/2

�

=

�
0 1
1 0

�

By construction M has eigenvectors |+� and |−� with eigenvalues 1 and −1 respectively.

One important observable of any physical system is its energy; the corresponding hermitian matrix
or operator is called the Hamiltonian, and is often denoted by Ĥ. The eigenvectors of this operator
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are the states of the system with definite energy, and the eigenvalues are the numerical values of
the energies of these eigenstates.

Consider, for example, two states ψ1 and ψ2 such that Ĥψ1 = E1ψ2 and Ĥψ2 = E2ψ2, where
E1 �= E2 (in quantum mechanical language this means that the eigenvalues are non-degenerate).
Suppose we take 106 qubits prepared in state ψ1 and measure the energy of each one and make a
histogram. What does the histogram look like? See Figure 1(a).

Now suppose that we prepare 106 qubits in the state ψ� =
�

3
5ψ1 +

�
2
5ψ2, measure each of their

energies, and make a histogram. How does it look? See Figure 1(b)

Ask yourself, is ψ� a state with well-defined energy? The answer is NO. Why? Because ψ� is not
an eigenstate of the Hamiltonian operator. Let’s check this:

Ĥψ� = Ĥ

��
3

5
ψ1 +

�
2

5
ψ2

�
=

�
3

5
E1ψ1 +

�
2

5
E2ψ2

Does this equal (constant)×(ψ�)? No, because E1 and E2 are not equal. Therefore ψ� is not an
eigenstate of the energy operator and has no well-defined energy.

Even though a given state |ψ� might not have a definite energy, we can still ask the question, “what
is the expected energy of this state?” i.e. if we prepare a large number of systems each in the
state |ψ�, and then measure their energies, what is the average result? In our notation above, this
expected value would be

�
k−1
j=0 |aj |

2λj . This is exactly the value of the bilinear form �ψ|M |ψ�.

Returning to our example above, where M = H, this expected value is 3
5E1 +

2
5E2.

How much does the value of the energy of the state |ψ� vary from measurement to measurement?
One way of estimating this is to talk about the variance, var(X) of the measurement outcome.
Recall that

var(X) = E(X2)− E(X)2.

So to compute the variance we must figure out E(X2), the expected value of the square of the
energy. This expected value is

k−1�

j=0

|aj |
2λ2

j .

This is exactly the value of the bilinear form �ψ|M2 |ψ�. So the variance of the measurement
outcome for the state, |ψ� is

var(X) = E(X2)− E(X)2 = �ψ|M2
|ψ� − (�ψ|M |ψ�)2.

Returning to our example above,

�
ψ���M2

��ψ�� =
k−1�

j=0

|aj |
2λ2

j =
3

5
E2

1 +
2

5
E2

2 .

The variance is therefore

var(X) =
3

5
E2

1 +
2

5
E2

2 − (
3

5
E1 +

2

5
E2)

2.
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Schrödinger’s Equation

Schrödinger’s equation is the most fundamental equation in quantum mechanics — it is the equation
of motion which describes the time evolution of a quantum state.

i�d |ψ(t)�
dt

= H |ψ(t)� .

Here H is the Hamiltonian or energy operator, and � is a constant (called Planck’s constant).

To understand Schrödinger’s equation, it is instructive to analyze what it tells us about the time
evolution of the eigenstates of the Hamiltonian H. Let’s assume we are given a quantum system
whose state at time t = 0 is, |ψ(0)� = |φj�, an eigenstate of the Hamiltonian with eigenvalue, λj .
Plugging this into Schrödinger’s equation,

d |ψ(0)�

dt
= −

i

�H |φj� = −
i

�λj |φj�

So let us consider a system that is in the state |ψ� at time t = 0 such that that |ψ(0)� = |φj�, an
eigenvector of H with eigenvalue λj . Now by Schrödinger’s equation,

d |ψ(0)�

dt
= −H |φj� /� = −iλj/� |φj� .

Thus |ψ(t)� = a(t) |φj�. Substituting into Schrödinger’s equation, we get:

i
da(t) |φj�

dt
= H |a(t)φj� = a(t)λj |φj� .

Thus i�da(t)
a(t) = λjdt. Integrating both sides with respect to t: i� ln a(t) = λjt. Therefore a(t) =

e−iλjt/�, and |ψ(t)� = e−iλjt/� |φj�.

So each energy eigenstate |φj� is invariant over time, but its phase precesses at a rate proportional
to its energy λj .

What about a general quantum state |ψ(0)� =
�

j
aj |φj�? By linearity, |ψ(t)� =

�
j
aje−iλjt |φj�.

In the basis of eigenstates of H, we can write this as a matrix equation:

|ψ(t)� =





e−
i

�λ1t 0
.

.

0 e−
i

�λdt









a0
.
.

ak−1



 = U(t) |ψ(0)�

We have proved that if the Hamiltonian H is time independent, then Schrödinger’s equation implies
that the time evolution of the quantum system is unitary. Moreover, the time evolution operator

U(t) is diagonal in the basis of eigenvectors of H, and can be written as U(t) = e
−iHt

� .

Returning to our running example, suppose ψ(x, t = 0) = ψ1(x) where Ĥψ1 = E1ψ1(x). What is
ψ(x, t �= 0)? The answer is,
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ψ(x, t) = ψ1(x)e
−iE1t/�

But what if ψ(x, t = 0) = ψ� =
�

3
5ψ1 +

�
2
5ψ2? What’s ψ(x, t �= 0) in this case? The answer then

becomes,

ψ(x, t) =

�
3

5
ψ1e

−iE1t/� +

�
2

5
ψ2e

−iE2t/�

Each different piece of the wavefunction with differnt well-defined energy dances to its own little
drummer. Each piece spins at frequency proportional to its energy.

Conservation Laws and the Hamiltonian

Energy is typically the most important physical observable characterizing any system. You might
still wonder, “why is energy so intimately related to the time evolution of a quantum system?” In
this section we will try to answer this question. The answer is related to a fundamental physical
principle, namely the conservation of energy.

We start by assuming that the time evolution of the state |ψ� in Schrödinger’s equation is governed
by some arbitrary hermitian operator M , or equivalently that the evolution of the system is given
by some unitary transformation U = e−iMt (with a little bit of work this can be shown to follow
from the third axiom of quantum mechanics in the “time independent situation”, where the external
conditions the system is subject to do not change over time). So our question reduces to asking,
why is the operator M necessarily the energy operator?

To see this, we must first show that if A is any observable corresponding to a physical quantity
that is conserved in time, then A commutes with M (as defined above).

Let |ψ� be the initial state of some physical system, and |ψ�� = U |ψ� = eiMt |ψ� be the state after
an infinitesimal time interval t.
Since A corresponds to a conserved physical quantity, �ψ�|A |ψ�� = �ψ|A |ψ�.
i.e. �ψ|U †AU |ψ� = �ψ|A |ψ�.
Since this equation holds for every state |ψ�, it follows that U †AU = A.
Substituting for U , we get
LHS = e−iMtAeiMt ≈ (1− iMt)A(1 + iMt) ≈ A− it[M,A]
where [M,A] = MA−AM .
It follows that [M,A] = 0.

So any observable corresponding to a conserved quantity must commute with the operator M that
describes the time evolution. Now, in addition to energy, there are situations where other physical
quantities, such as momentum or angular momentum, are also conserved. These are in a certain
sense ”accidental” conservation relations — they may or may not hold. Energy however is always
conserved. Hence the operator H cannot be just any operator that happens to commute with M ,
but must have some universal property for all physical systems. An intrinsic reason that H might
commute with M is that H = f(M). i.e. H is some function of M . Since any function of M
commutes with M we now assume that H = f(M).



8.1. OBSERVABLES 71

The next critical point to show is that if H = f(M), then f must necessarily be a linear function.
Consider a quantum system consisting of two subsystems that do not interact with each other. If
M1 and M2 are the time evolution operators corresponding to each subsystem, then M1 + M2 is
the time evolution operator of the system (since the two subsystems do not interact). So the total
energy of the system is f(M1 +M2). On the other hand, since the two subsystems do not interact,
the system hamiltonian, H = H1+H2 = f(M1)+f(M2). Hence f(M1+M2) = f(M1)+f(M2), and
therefore f is a linear function f(M) = �M , where � is a constant. So H = �M and U(t) = eiHt/�.
Since Ht/� must be dimensionless, the constant � must have units of energy x time.


