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Survival Analysis 

In some studies, the outcome variable is the time 

to an event 

 Time to the composite endpoint in CORONARY  

 Time to progression or death in a cancer trial 

 Time to deterioration of functional status in  

 patients with multiple sclerosis 
 

Methods for analyzing time to event data are 

known as survival analysis 



Role of Survival Analysis 

Survival analysis is most important when subjects 
enter at different times and have different 
durations of follow-up 
 

Survival analysis compares the entire survival 
experience, not just the percentages who remain 
alive at the end of the study 
 

For example, the survival distributions may differ 
even though the five-year survival rates are similar 
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Estimating the Survival Distribution 

Survival data differ from other types of outcome 

data 
 

  It is not appropriate to assume normality 

  Observations can be censored because 
 

 Study follow-up ends before a participant has 

 experienced the event 

 Participants withdraw or are lost to follow-up, again prior 

 to observing the event 



Survival Analysis 

This segment will focus on two issues: 

 

  Estimating the survival distribution 

  Comparing the survival distributions in two 

   groups.  

  

We begin with a simple example:  Consider a study 
with T years of  enrollment and T years of follow-up 
after enrollment ends 
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Features of the Data 

Two participants have events, two are censored at 

time 2T 
 

This is called administrative censoring.  It occurs 

because of the study design 
 

For data analysis, we represent each patient’s 

experience relative to their time on study, i.e., the 

elapsed time since enrollment 



S
u

b
je

c
t 

1 

2 

3 

4 

 

 

Study Time 



Most Survival Data Have Incomplete Follow-up 

When the study has an enrollment period and ends 

at a fixed date, possible follow-up will depend on the 

enrollment date 
 

Subjects may be censored because the study ends, 

may withdraw, or may be lost to follow-up 
 

The survival experience for each patient is 

represented by the duration of follow-up and the 

survival status at the end of follow-up 

 

 



Estimating the Survival Distribution 

Let T be the time to the event (death) for a 
randomly selected member of the population 
 

 F(t) = Pr(T<t) is the dist of time to death 
 

 S(t) = 1 – F(t) is the survival distribution 
 

It would be easy to estimate S(t) if there were no 
censoring.  We need a method for estimating S(t) 
when observations are censored 



The Kaplan-Meier Estimate 

The Kaplan-Meier estimate of S(t) builds upon 
classical methods for the analysis of life tables 
 

It updates S(t) when events occur based on the 
proportion of study participants followed to that 
time point who have an event.   
 

The estimate is based on the products of the 
conditional probabilities of surviving each event 
time 



The Kaplan-Meier Estimate 

An Example: 
 

Suppose that 100 participants enter a study and are 

followed until death or for up to two years (Group 1) 

 

At the beginning of year 2, 100 additional patients enter 

the study and are followed for one year (Group 2) 

 

The data are shown in the following table 



Experience of 200 Individuals 

      Year 1  Year 2 

Group 

  Entered      100       80 

   1  Deaths        20       20 

  Survivors        80       60 

 

  Entered      100 Group 2   

   2  Deaths        25 contributes  

  Survivors        75 Year 1 data 



Estimating the Survival Probability  

Year 1:     𝑺 (1) = 155/200 = 0.775 

 

Year 2:     𝑺 (2|1)  =    (Alive at 2|Alive at 1)  

          = 60/80 

          = 0.75 

Then  

    𝑺 (2) = 𝑺 (1)*𝑺 (2|1) 

   = 0.775*0.75 = 0.58 
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The CORONARY Trial:  Kaplan–Meier Curves for the 

Primary Composite Outcome at 1 Year. 

Lamy A et al. N Engl J Med 2013;368:1179-1188. 



Comparing Two Survival Curves 

We would like to build on the methods of life-table 

analysis to compare two or more time-to-event 

distributions 

 

We could compare the probabilities of survival at a 

single time point, but a comparison of the entire 

survival experience is preferable 



Comparing Two Survival Curves 

The Mantel-Haenszel test 

  Each time an event occurs, we form a 2 by 2 table 

 

  No. 

Deaths 

No. 

Survivors 

No. At 

Risk 

Gp1 aj bj aj + bj 

Gp2 cj dj cj + dj 

nj 



Comparing Two Survival Curves 

If S1=S2, we can assume for each table 
 

 E(aj| aj+bj) = (aj+cj)(aj+bj)/nj 
 

 V(aj) = (aj+cj)(bj+dj)(aj+bj)(cj+dj)/(nj
2(nj-1)) 

 

And 

 

 



The Log-rank Test 

 

The MH test is also known as the log-rank test.   

 

When there is no censoring, it is equivalent to a rank 

test based on the logarithms of the ranks 

 



Proportional Hazards Regression 

To develop a regression model for survival data, we 

need to choose a metric for the influence of 

covariates 

  

The proportional hazards regression model assumes 

that covariates modify a shared underlying hazard 

function 



The Hazard Function 

If S(t) = Pr(T>t), where T is the time of death, we 

can define the hazard function at time t as 

 

 (t) = Pr(t<T<t+dt)/P(T>t)dt 

 

Two survival distributions, S1(t) and S2(t), satisfy 

the proportional hazards assumption if 1(t) = 

K2(t)  



The Proportional Hazards Model 

More generally, the PH, or Cox, model for survival 

data assumes that 

  (t, X) = 0(t)exp(X) 

where 0(t) is an underlying hazard function 

shared by all members of the population 
 

 X = 1X1 + 2X2 + … + KXK 
 

exp(X) > 0 for all values of X, which is 

appropriate since hazard rates are nonnegative 



The Proportional Hazards model 

i = the logarithm of the ratio of the hazards (or 

relative risk at time t) for two individuals who differ 

only by one unit in the value of Xi 

 

If Xi is an indicator variable, i represents the 

logarithm of the hazard ratio in the two groups 

identified by Xi 



Estimating  

The estimates of the elements of  depend only on 

which subject experiences the event at each 

occasion, not on the times of the events 
 

Estimation requires iterative calculations to 

maximize the partial likelihood function 
 

The interpretation parallels linear regression, with 

regression coefficients interpreted in terms of 

relative risk or hazard  



The CORONARY Trial 

“We conducted a time-to-event analysis, using Cox 

regression to report the 1-year outcomes. The time to 

the first occurrence of any one of the components of 

the primary outcome was described with the use of 

Kaplan–Meier survival curves, and the comparisons 

between the two study groups were performed 

with the use of a log-rank test.”  

 

The treatment effect is expressed as the hazard ratio 

(with 95% confidence intervals) 

 

 



The CORONARY Trial 

 

 



The CORONARY Trial 

 

 At 1 year after CABG, there was no significant 

difference between off-pump and on-pump CABG 

with respect to the primary composite outcome. 

 

There were also no differences in the rate of repeat 

coronary revascularization, quality of life, or 

neurocognitive function. 


