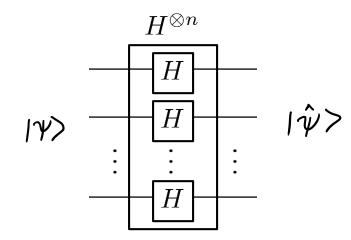
Umesh V. Vazirani University of California, Berkeley

Lecture 8: Early Quantum Algorithms

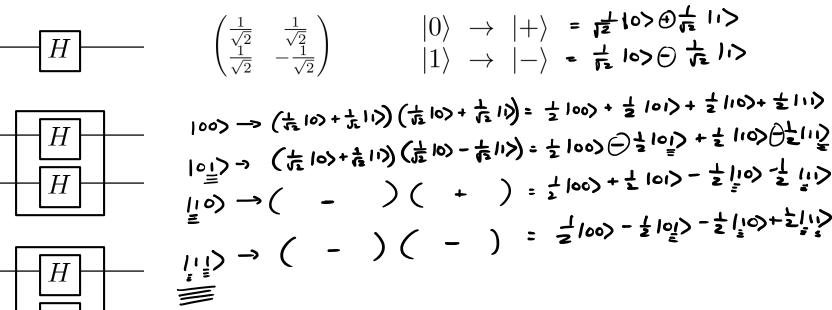
Fourier Sampling

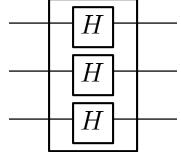
Hadamard Transform



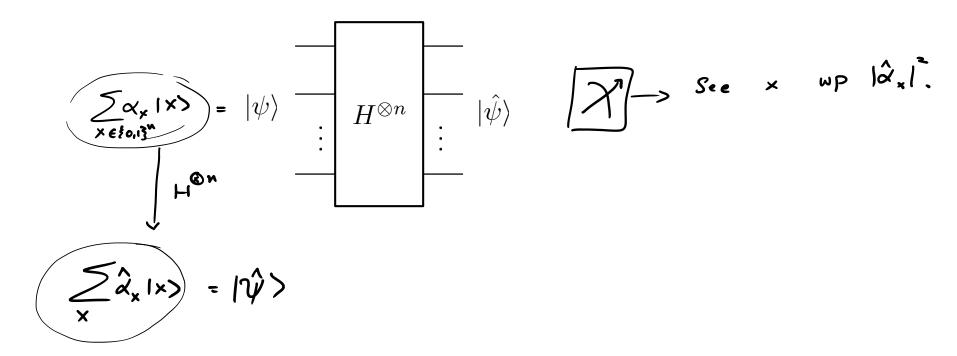
Hadamard Transform

• Basic Building Block





Fourier Sampling



Umesh V. Vazirani University of California, Berkeley

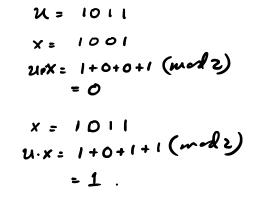
Lecture 8: Early Quantum Algorithms

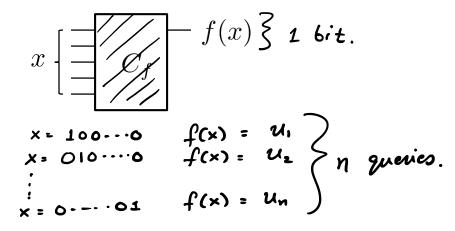
Fourier Sampling

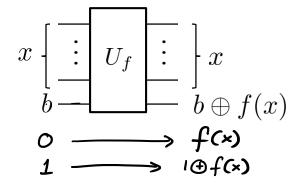
Parity problem

We are given a function
$$f : \{0,1\}^n \to \{0,1\}$$
 as a black box.
We know that $f(x) = u \cdot x$ for some "hidden" $\underline{\underline{u}} \in \{0,1\}^n$.
 $u_1 \times u_1 \times u_2 \times u_3 \times u_4 \times u_5 \times u$

How do we figure out u with as few queries to f as possible? $n = \frac{1}{6}$, $s + s + \frac{1}{2}$.





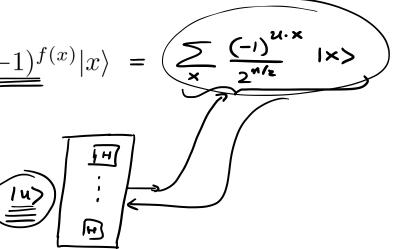


Bernstein-Vazirani Algorithm

We are given a function $f : \{0, 1\}^n \to \{0, 1\}$ as a black box. We know that $f(x) = u \cdot x$ for some "hidden" $u \in \{0, 1\}^n$.

How do we figure out u with as few queries to f as possible?

- Set up superposition $\frac{1}{2^{n/2}} \sum_{x} (\underline{-1})^{f(x)} |x\rangle =$
- Fourier sample to obtain u.



Setting up superposition

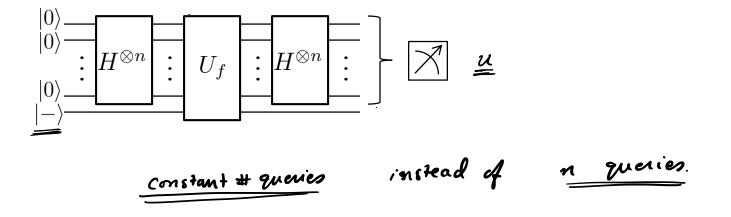
We are given a function $f : \{0, 1\}^n \to \{0, 1\}$ as a black box. We know that $f(x) = u \cdot x$ for some "hidden" $u \in \{0, 1\}^n$.

Set up superposition $\frac{1}{2^{n/2}}\sum_{x}(-1)^{f(x)}|x\rangle$ • 1 Z 1/2 |x) $U \otimes n$ U_f ーショ ニーショー ニーショ

$$\frac{f(x)=1}{x} = \frac{1}{x} =$$

Bernstein-Vazirani Algorithm

We are given a function $f : \{0,1\}^n \to \{0,1\}$ as a black box. We know that $f(x) = \underline{\underline{u}} \cdot x$ for some "hidden" $u \in \{0,1\}^n$.



Recursive Fourier Sampling

- Recursive version of the parity problem.
- Classical algorithms satisfy the recursion $\underline{\underline{T(n)}} > \underline{\underline{n}}T(n/2) + n \qquad n \cdot \underline{\underline{n}} \cdot \underline{\underline{n}} \cdot \dots$ Solution: T(n) = $\Omega(n^{\log n})$ super polynomial.
- Quantum algorithm satisfies recursion $\underline{T(n)} = 2T(n/2) + O(n)$ Solution: T(n) = O(n log n)

polynomial

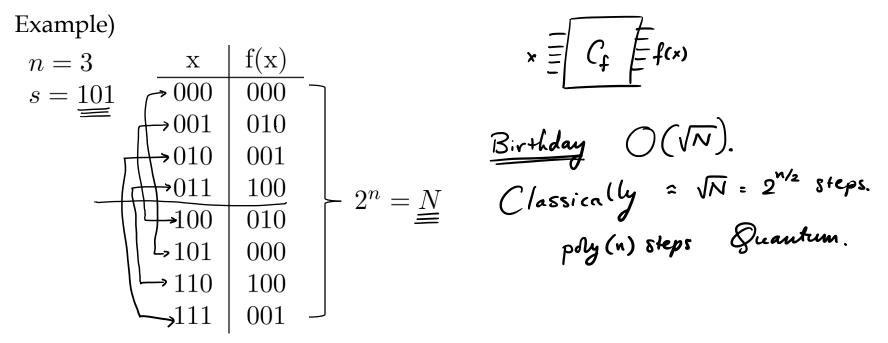
Umesh V. Vazirani University of California, Berkeley

Lecture 8: Early Quantum Algorithms

Simon's Algorithm

Challenge

We are given a 2-1 function $f : \{0, 1\}^n \to \{0, 1\}^n$ such that: there is a secret string $\underline{s} \in \{0, 1\}^n$ such that : $f(x) = f(x \oplus s)$ Challenge: find \underline{s} .



Simon's algorithm

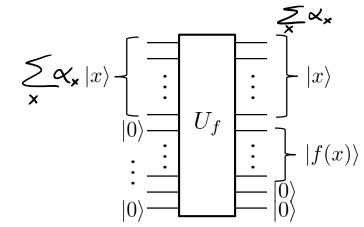
SE E0,13" NE E0,13"

- Set up random superposition $\frac{1}{\sqrt{2}}|r
 angle+\frac{1}{\sqrt{2}}|r\oplus s
 angle$
- Fourier sample to get a random $\underline{y}: y \cdot s = 0 \pmod{2}$ $y_1 \cdot s_1 + y_2 \cdot s_2 + \cdots + y_n \cdot s_n = 0 \pmod{2}$
- Repeat steps n-1 times to generate $\underline{\underline{n-1}}$ linear equations in s.

Solve for $s = \frac{1}{2}$

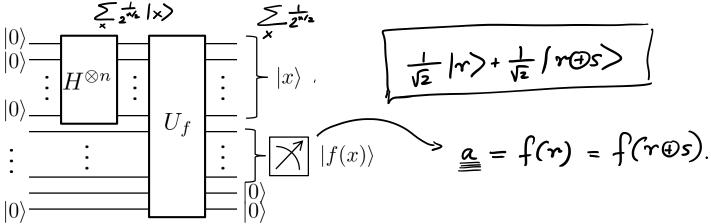
Setting up random superposition

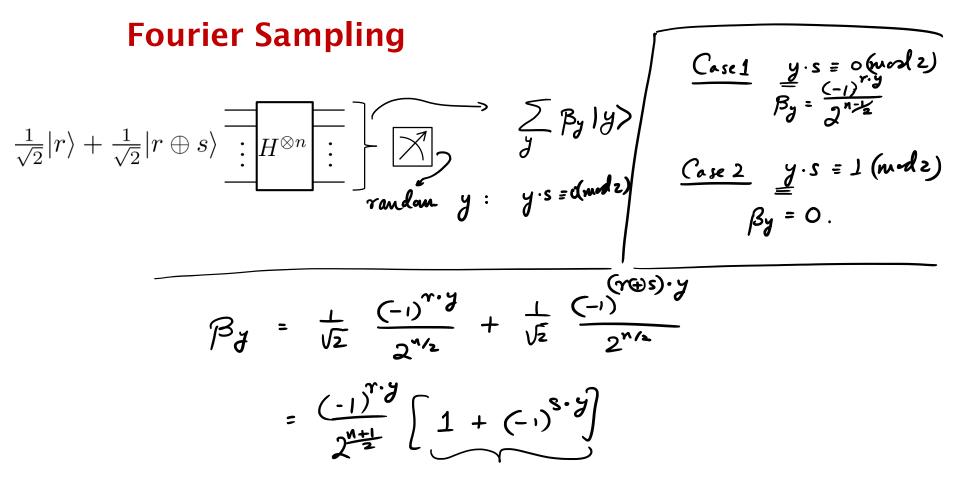
We are given a function $f : \{0, 1\}^n \to \{0, 1\}^n$ as a black box. We know that f is a 2-1 function. (There is a secret string $s \in \{0, 1\}^n$ such that $f(x) = f(x \oplus s)$)

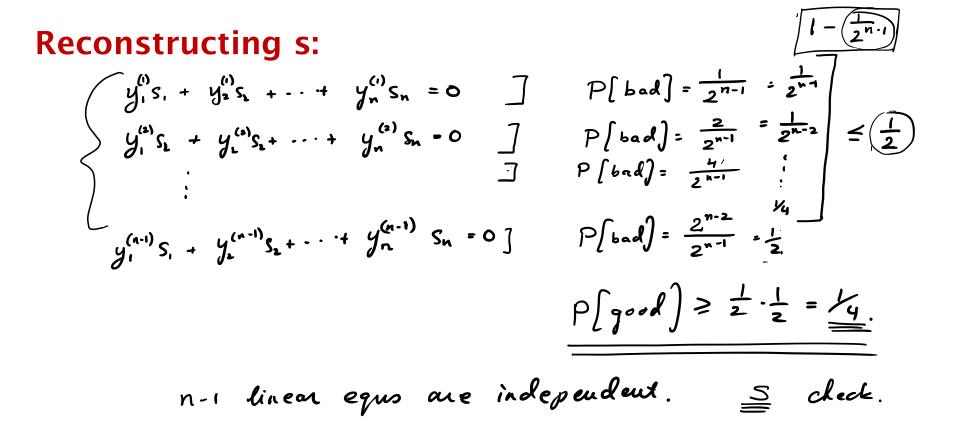


Setting up random superposition

We are given a function $f : \{0, 1\}^n \to \{0, 1\}^n$ as a black box. We know that f is a 2-1 function. (There is a secret string $s \in \{0, 1\}^n$ such that $f(x) = f(x \oplus s)$)

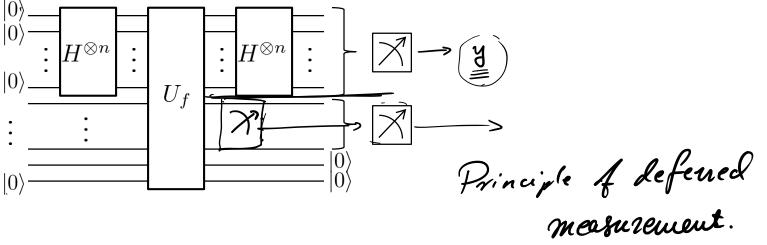






Simon's algorithm

We are given a function $f : \{0, 1\}^n \to \{0, 1\}^n$ as a black box. We know that f is a 2-1 function. (There is a secret string $s \in \{0, 1\}^n$ such that $f(x) = f(x \oplus s)$)

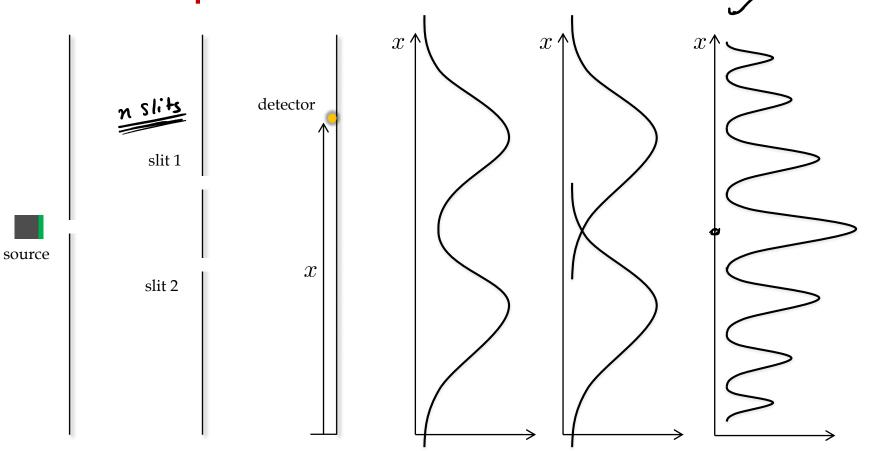


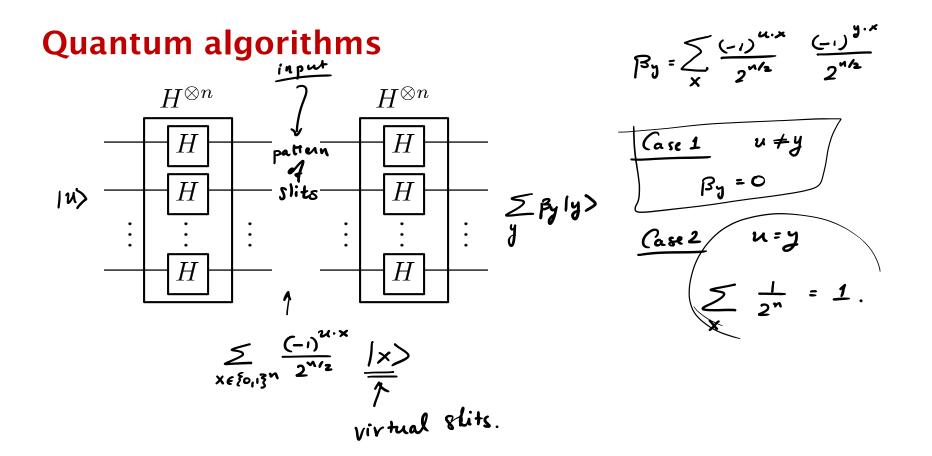
Umesh V. Vazirani University of California, Berkeley

Lecture 8: Early Quantum Algorithms

2ⁿ-slit experiment

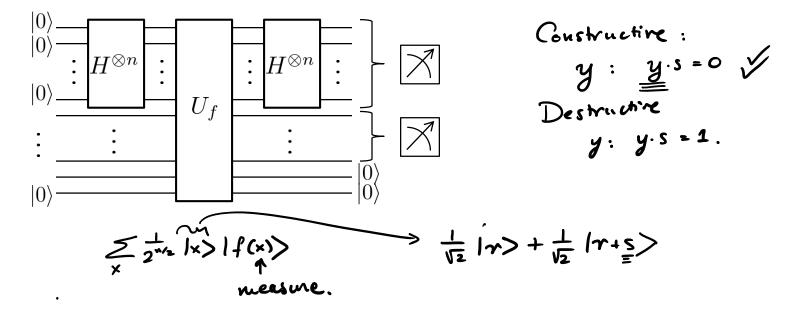
Double-slit experiment





U_f & virtual slits

We are given a function $f : \{0, 1\}^n \to \{0, 1\}^n$ as a black box. We know that f is a 2-1 function. (There is a secret string $s \in \{0, 1\}^n$ such that $f(x) = f(x \oplus s)$)



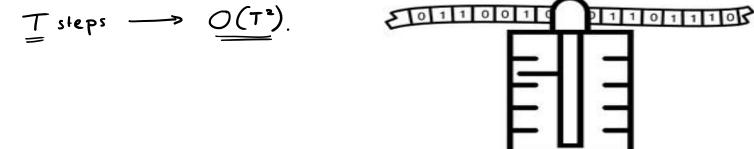
Umesh V. Vazirani University of California, Berkeley

Lecture 8: Early Quantum Algorithms

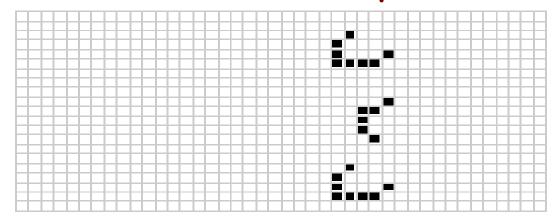
Extended Church-Turing Thesis

Extended Church-Turing Thesis

Any "reasonable" model of computation can be simulated on a (probabilistic) Turing Machine with at most polynomial simulation overhead.



Nature as a Computer



local diff equs. } discrictize.

Cellular Automaton.

Quantum computation is the only model of computation that violates the Extended Church-Turing thesis.