TURNING TWEETS INTO KNOWLEDGE
An Introduction to Text Analytics
Twitter

- Twitter is a social networking and communication website founded in 2006

- Users share and send messages that can be no longer than 140 characters long

- One of the Top 10 most-visited sites on the internet

- Initial Public Offering in 2013

- Valuation \(~\$31\) billion
Impact of Twitter

- Use by protestors across the world
- Natural disaster notification, tracking of diseases
- Celebrities, politicians, and companies connect with fans and customers
- Everyone is watching!
The Associated Press is a major news agency that distributes news stories to other news agencies.

In April 2013 someone tweeted the above message from the main AP verified Twitter account.

S&P500 stock index fell 1% in seconds, but the White House rapidly clarified.
Many companies maintain online presences.
Managing public perception in age of instant communication essential.
Reacting to changing sentiment, identifying offensive posts, determining topics of interest...
How can we use analytics to address this?
Using Text as Data

• Until now, our data has typically been
 • Structured
 • Numerical
 • Categorical

• Tweets are
 • Loosely structured
 • Textual
 • Poor spelling, non-traditional grammar
 • Multilingual
Text Analytics

- We have discussed why people care about textual data, but how do we handle it?

- Humans can’t keep up with Internet-scale volumes of data
 - ~500 million tweets per day!

- Even at a small scale, the cost and time required may be prohibitive
How Can Computers Help?

• Computers need to understand text

• This field is called **Natural Language Processing**

• The goal is to understand and derive meaning from human language

• In 1950, Alan Turing proposes a test of machine intelligence: passes if it can take part in a real-time conversation and cannot be distinguished from a human
History of Natural Language Processing

- Some progress: “chatterbots” like ELIZA
- Initial focus on understanding grammar
- Focus shifting now towards statistical, machine learning techniques that learn from large bodies of text
- Modern “artificial intelligences”: Apple’s Siri and Google Now
Why is it Hard?

• Computers need to understand text

• Ambiguity:
 • “I put my bag in the car. It is large and blue”
 • “It” = bag? “It” = car?

• Context:
 • Homonyms, metaphors
 • Sarcasm

• In this lecture, we’ll see how we can build analytics models using text as our data
Sentiment Mining - Apple

- Apple is a computer company known for its laptops, phones, tablets, and personal media players.
- Large numbers of fans, large number of “haters”
- Apple wants to monitor how people feel about them over time, and how people receive new announcements.
- Challenge: Can we correctly classify tweets as being negative, positive, or neither about Apple?
Creating the Dataset

- Twitter data is publically available
 - Scrape website, or
 - Use special interface for programmers (API)
 - Sender of tweet may be useful, but we will ignore

- Need to construct the outcome variable for tweets
 - Thousands of tweets
 - Two people may disagree over the correct classification
 - One option is to use Amazon Mechanical Turk
Amazon Mechanical Turk

- Break tasks down into small components and distribute online

- People can sign up to perform the tasks for a fee
 - Pay workers, e.g. $0.02 per classified tweet
 - Amazon MTurk serves as a broker, takes small cut

- Many tasks require human intelligence, but may be time consuming or require building otherwise unneeded capacity
Our Human Intelligence Task

- Actual question we used:
 Judge the sentiment expressed by the following item toward the software company "Apple"

- Workers could pick from
 - Strongly Negative (-2)
 - Negative (-1)
 - Neutral (0)
 - Positive (+1)
 - Strongly Positive (+2)

- Five workers labeled each tweet
Our Human Intelligence Task

• For each tweet, we take the average of the five scores.
 • “LOVE U @APPLE” (1.8)
 • “@apple @twitter Happy Programmers' Day folks!” (0.4)
 • “So disappointed in @Apple Sold me a Macbook Air that WONT run my apps. So I have to drive hours to return it. They wont let me ship it.” (-1.4)

• We have labels, but how do we build independent variables from the text of a tweet?
A Bag of Words

• Fully understanding text is difficult
• Simpler approach:
 Count the number of times each word appears

• “This course is great. I would recommend this course to my friends.”

<table>
<thead>
<tr>
<th>THIS</th>
<th>COURSE</th>
<th>GREAT</th>
<th>...</th>
<th>WOULD</th>
<th>FRIENDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
A Simple but Effective Approach

• One feature for each word - a simple approach, but effective

• Used as a baseline in text analytics projects and natural language processing

• Not the whole story though - preprocessing can dramatically improve performance!
Cleaning Up Irregularities

- Text data often has many inconsistencies that will cause algorithms trouble

- Computers are very literal by default – Apple, APPLE, and ApPLe will all be counted separately.

- Change all words to either lower-case or upper-case

<table>
<thead>
<tr>
<th>Apple</th>
<th>APPLE</th>
<th>ApPLe</th>
<th>apple</th>
</tr>
</thead>
<tbody>
<tr>
<td>apple</td>
<td>apple</td>
<td>apple</td>
<td>3</td>
</tr>
</tbody>
</table>

15.071x –Turning Tweets Into Knowledge: An Introduction to Text Analytics 3
Cleaning Up Irregularities

- Punctuation also causes problems – basic approach is to remove everything that isn’t a,b,…,z

- Sometimes punctuation is meaningful
 - Twitter: @apple is a message to Apple, #apple is about Apple
 - Web addresses: www.website.com/somepage.html

- Should tailor approach to the specific problem

<table>
<thead>
<tr>
<th>@Apple</th>
<th>APPLE!</th>
<th>--apple--</th>
</tr>
</thead>
<tbody>
<tr>
<td>apple</td>
<td>apple</td>
<td>apple</td>
</tr>
</tbody>
</table>

apple 3
Removing Unhelpful Terms

- Many words are frequently used but are only meaningful in a sentence - “stop words”
 - Examples: the, is, at, which…
 - Unlikely to improve machine learning prediction quality
 - Remove to reduce size of data

- Two words at a time?
 - “The Who” → “ ”
 - “Take That” → “Take”
Stemming

- Do we need to draw a distinction between the following words?

 argue argued argues arguing

- Could all be represented by a common stem, argu

- Algorithmic process of performing this reduction is called stemming

- Many ways to approach the problem
Stemming

- Could build a **database of words** and their stems
 - **Pro**: handles exceptions
 - **Con**: won’t handle new words, bad for the Internet!

- Can write a **rule-based** algorithm
 - e.g. if word ends in “ed”, “ing”, or “ly”, remove it
 - **Pro**: handles new/unknown words well
 - **Con**: many exceptions, misses words like *child* and *children* (but would get other plurals: *dog* and *dogs*)
Stemming

• The second option is widely popular
 • “Porter Stemmer” by Martin Porter in 1980, still used!
 • Stemmers have been written for many languages

• Other options include machine learning (train algorithms to recognize the roots of words) and combinations of the above

Real example from data:

“by far the best customer care service I have ever received”

“by far the best custom care servic I have ever receiv”
Sentiment Analysis Today

- Over 7,000 research articles have been written on this topic
- Hundreds of start-ups are developing sentiment analysis solutions
- Many websites perform real-time analysis of tweets
 - “tweetfeel” shows trends given any term
 - “The Stock Sonar” shows sentiment and stock prices
Text Analytics in General

• Selecting the specific features that are relevant in the application
• Applying problem specific knowledge can get better results
 • Meaning of symbols
 • Features like number of words
The Analytics Edge

• Analytical sentiment analysis can replace more labor-intensive methods like polling

• Text analytics can deal with the massive amounts of unstructured data being generated on the internet

• Computers are becoming more and more capable of interacting with humans and performing human tasks

• In the next lecture, we’ll discuss IBM Watson, an impressive feat in the area of Text Analytics