
Object Oriented Programming behind the scenes with diagrams!

Hi ! You should be really proud of yourself, you've come a long way from week 1, and now we are going to venture into the world

of Object Oriented Programming (OOP). (This post will cover content from lectures in week 5, including instances and

Hierarchies)

First, let's discuss Classes and Instances:

A class is like a stencil or blueprint that represents something that has attributes and contains functions (methods). We will look at
an example in the post.

This post will be based on an example to make these abstract concepts come to life!

If we want to write code to manage a medical facility, we will need to represent a Patient. But... how can we represent the abstract
notion of a patient in a general way? Well, all patients are humans, so they share common attributes and perform common
actions. How can we do this?? Let me think... We can represent a patient by using a Class!

You've learned the syntax for defining a class. We use the keyword class followed by the class name (Patient) with a capital

letter and, in parenthesis we define the inheritance (if it's the first one in the chain, if it doesn't inherit from any custom class, we

write object). Next, we write a colon. Below this line, we indent our code so python's interpreter knows it belongs to this class

definition.

The first thing we will find is the def keyword and an __init__()method. This is a function that will run every time we create an

instance (in just a second we will see what instances are). Next, we have parentheses and inside them we find the keyword self,

a comma and as many parameters or attributes as we need. Next, we write a colon, indent the code below and add this:

self.attribute_name = parameter_name for as many attributes as we need.

In this case, a patient has a name, an age, a phone number and a registration code. We can add as many as we need, but for
demonstration purposes, let's use only 4.

https://docs.python.org/3.5/reference/datamodel.html#object.__init__

Instances

Now (like I promised ;-)) we will learn about INSTANCES!

At first, the concept of an instance might seem very abstract, but let's keep the example of a patient to illustrate this concept.

We've written a class that is a general representation of a patient. It has attributes that all patients share, but they don't actually
have values yet, not until we create instances.

If we have the general representation of a patient, every individual patient is an instance of that general notion of a patient. Let me
explain... in the diagram below you can see 4 patients. Each one of them has his/her own name, age, phone, and code. We can't
expect all of them to have the same values for the attributes we've defined in our general blueprint.

By creating instances, we are using the blueprint to fill the data for each patient in a consistent way, following the same structure,
and asking for values for the same parameters in the same order.

Here you can see how we create an instance of a patient.

instance_name = Class_name(parameters)

In this case, our new instance is patient1 and his/her attributes are in parentheses in the same order as we defined them in our
class, our general blueprint.

This way, we can create as many instances as we'd like. In this case, we create 4 instances, one for each patient with their own
data.

Methods

Now that we presented what instances are, we can dive into Methods.

Methods are functions contained in a class. They are related to the class. In this case, we know patients walk and breath, so we
define these methods in our general blueprint so all of our instances “are able to breath and walk” (actually, these functions will
print the average human walking speed and respiratory rate).

Perhaps you've noticed that the method above only has self in parentheses. We can set formal parameters for methods as well,

by writing a comma next to the keyword self and adding as many parameters as we need to use inside our function separated by
commas.

In the picture of the shell below you can see that it now asks for a parameter to execute the function correctly.

Inheritance

Let's analyze what happens if our general representation might not model every situation as precisely as we would like. If we need
to have custom attributes for a particular type of patient, this general representation might not work so well. What if we need to
define a cardiology patient and add a method to check his/her heart rate? Or a diabetic patient and add a blood sugar attribute?

This is where inheritance comes into play.

All cardiac, diabetic and orthopedic patients are patients, and share the same attributes as the general class, but they need their
own custom structure (methods and attributes)

We define their very own class, but to avoid repeating code we've already written for the general class, we use this code:

Let's do a closeup on the cardioPatient definition. Take a look at the blue rectangle. This line gives the cardioPatient all the
attributes a general patient has. And since we've set Patient in parentheses next to the initial cardioPatient class definition, every
instance of our cardioPatient class will have access to the Patient class' methods. A new attribute has also been added to
illustrate how we can customize these blueprints to make them fit our needs.

One last thing... Orthopedic patients may not walk like a general representation of a patient, so we would need to overwrite the
method walk in Patient class. This is done by writing a method walk in the orthopedicPatient class. If we have two methods that
are named the same, the method that is lowest in the chain will be executed. In this case, we have a child orthopedicPatient that
inherits from Patient, so the method found first will be the one in orthopedicPatient, as you can see in the shell.

I hope it helps! If you have any questions please ask the on the forums!

Estefania (kiara-elizabeth).

Attributions: -All complementary images used to make the diagrams (patients, ecg, diabetes and orthopedic patient) were taken
from pixabay.com, licensed under public domain

https://pixabay.com/

