
Python Take Cares

Ana Bell, Nitish Mittal
MIT 6.00.1x Course on Python Programming

nitish mittal [at] outlook.com

HELP from Documentation
dir(module)
help()

Important Characters and Sets of Characters

Tab \t
New Line \n
Backslash \\
String ” ” or ’ ’
Boolean True or False
Line Comment #comment
Block Comment ””” ””” or ”’ ”’

Order of Operations (Emory)

Operator Description
() Parentheses (grouping)
f(args...) Function call
x[index:index] Slicing
x[index] Subscription
x.attribute Attribute reference
** Exponentiation
+x, -x Positive, negative
*, /, % Mul, Div, Modulo
+, - Addition, subtraction
in, not in, is, is not Membership, Identity,
<,<=, >,>=, <>, ! =,== Comparison
not x Boolean NOT
and Boolean AND

Variable Names
• case sensitive
• cannot start with a number (ex, 1 assd is not allowed)

Six Steps to Defining a Function
1. What should your function do? Type a couple of example
calls.
2. Pick a meaningful name (often a verb or verb phrase):
What is a short answer to ”What does your function do”?
3. Decide how many parameters the function takes and any
return values
4. Describe what your function does and any parameters and
return values in the docstring
5. Write the body of the function
6. Test your function. Think about edge cases.

Typecasting and ”ast” module
>>> int(45)
45
>>> int(’45’)
45
>>> str(45)
’45’
>>> str(’45’)
’45’

>>> int(str(45))
45

To convert a string of the form of a list or a dict to its original
form, we use the ast module. Important when reading from a
file.
>>> s =′ [1, 2, 3]′

>>> ast.literal eval(s)
[1, 2, 3]

Calling Methods
module name.function name(x)
• math.sqrt(x)
• random.randrange(2,5)
• ast.literal eval(’{1 : 2, 3 : 4}’)

String Operators
Description Operator Example Output
equality == ’cat’ == ’cat’ True
inequality ! = ’cat’ ! = ’Cat’ True
less than < ’A’ < ’a’ True
greater than > ’a’ > ’A’ True
less than or equal <= ’a’ <= ’a’ True
greater than or equal >= ’a’ >= ’A’ True
contains in ’cad’ in ’abracadabra’ True
length of str s len(s) len(”abc”) 3

String Indexing and Slicing
• s[i] means character at ith position
• s[a:b] means index a to length (b-a) or a to b index but not
including b
• s[::-1] gives the reverse of a string
• String is immutable (ex. s[4]=’a’ will not replace ’a’ and
index 4 of s)
• Like for strings, slicing and indexing can also be used for
lists

List Functions
length of list len(list)
smallest element in list min(list)
largest element in list max(list)
sum of elements of list (list items are numeric) sum(list)

List Methods
append a value or string list.append(’a’)
extended by another list list.extend([’a’, ’b’])
removes the first occurrence of value list.remove(’a’)
reverses the list list.reverse()
count the occurrence of value list.count(’a’)
sort list in increasing order list.sort()
returns index of first occurrence of value list.index(’a’)

>>> a = [5] + [6] + [′a′, 7]
>>> print(a)
[5, 6,′ a′, 7]

http://www.mathcs.emory.edu/~valerie/courses/fall10/155/resources/op_precedence.html

List Mutability
We say that lists are mutable: they can be modified.
>>> lst = [1, 2, 3]
>>> lst[0] =′ apple′

>>> lst
[′apple′, 2, 3]

List Aliasing
>>> lst1 = [11, 12, 13, 14, 15, 16, 17]
>>> lst2 = lst1
>>> lst1[−1] = 18
>>> lst2
[11, 12, 13, 14, 15, 16, 18]

After the second statement executes, lst1 and lst2 both refer
to the same list. When two variables refer to the same objects,
they are aliases. If that list is modified, both of lst1 and lst2
will see the change. This is also known as Deep Copy.

>>> lst1 = [1, 2, 3]
>>> lst2 = lst1[:]
>>> lst3 = lst1.copy()
>>> lst2.remove(2)
>>> lst3.remove(3)
>>> lst1
[1, 2, 3]

Both lst2 and lst3 are Shallow Copies of list1.

Be careful about:
>>> lst1 = [11, 12, 13, 14, 15, 16, 17]
>>> lst2 = lst1
>>> lst1 = [5, 6] #Reference of lst1 is changed
>>> lst2
[11, 12, 13, 14, 15, 16, 17]

Dict
• The values of a dictionary can be of any type, but the keys
must be of an immutable data type such as strings, numbers,
or tuples.
• Keys can be numbers, strings, Booleans
•A list is unhashable in a dictionary (cannot be used as a key)
• A tuple is hashable in a dictionary (can be used as a key).
• Values can be dicts, strings, numbers, booleans, lists

for key in my dict:
value = my dict[key]

This is same as:
for key, value in my dict.items():

Set
A set is a data structure in which all the elements are unique.

>>> a = set()
>>> a.add(1)
>>> a.add(2)
>>> a.add(3)
>>> a
{1, 2, 3}
>>> a.add(1)
>>> a
{1, 2, 3}
>>> a.remove(1)
>>> a
{2, 3}
Consider two sets:

>>> a = {1, 2, 3, 4}
>>> b = {3, 4, 5, 6}

Union
>>> a.union(b)
{1, 2, 3, 4, 5, 6}

Intersection
>>> a.intersection(b)
{3, 4}

Difference
>>> a.difference(b)
{1, 2}

Global and Local Variables
Variables defined outside functions are global variables.
Their values may be accessed inside functions without dec-
laration.

To modify to a global variable inside a function, the vari-
able must be declared inside the function using the keyword
global.

def x():
global num
num = 5

def y():
num = 4

>>> num = 7
>>> print(num)
7
>>> x()
>>> print(num)
5
>>> y()
>>> print(num)
5

Reading CSV Files
Consider a CSV file with the content as:

Name Gender Age
John Male 21
Natasha Female 20
Scarlett Female 24

>>> import csv
>>> f = open(′info.csv′,′ r′)

Method - List
>>> csv1 = csv.reader(f)
>>> for row in csv1 :
>>> print(row[0])
Name
John
Natasha
Scarlett

Method - Dict
>>> csv2 = csv.DictReader(f)
>>> for row in csv2 :
>>> print(row[′Name′])
John
Natasha
Scarlett

	HELP from Documentation
	Important Characters and Sets of Characters
	Order of Operations (Emory)
	Variable Names
	Six Steps to Defining a Function
	Typecasting and "ast" module
	Calling Methods
	String Operators
	String Indexing and Slicing
	List Functions
	List Methods
	List Mutability
	List Aliasing
	Dict
	Set
	Union
	Intersection
	Difference

	Global and Local Variables
	Reading CSV Files
	Method - List
	Method - Dict

