Sample Size and Power III: Time to Event Outcomes

James H. Ware, PhD Harvard School of Public Health

Time to Event Endpoints

In many clinical trials, the primary endpoint is the time to an event, e.g., death or disease progression.

In that circumstance, the analyst will employ methods specific to the analysis of "survival data".

We discuss those methods briefly here, but in greater detail later in the course.

Analysis of Survival Data

Basic approach:

Estimate the survival distribution in each treatment group and use nonparametric methods to compare them. The most common test is known as the logrank test.

Modern methods accommodate variable entry times and periods of follow-up

Calendar Time

Study Time

Kaplan–Meier Curves for the Primary Outcome in the CORONARY Trial.

Lamy A et al. N Engl J Med 2013;368:1179-1188

Time to Event Endpoints

For sample size calculations, we sometimes assume that the survival distribution, S(t), is exponential,

 $S(t) = P(Patient Survives beyond t) = exp(-\lambda t)$

where λ is the hazard rate or force of mortality

In the exponential model, the survival distributions are complete characterized by λ

Time to Event Endpoints

With exponential survival distributions, the null hypothesis is

$$\mathbf{H}_{0}: \lambda_{\mathrm{T}} = \lambda_{\mathrm{C}}$$

A simple formula for the sample size, assuming all subjects are followed to the event, is

$$n = 2(Z_{\alpha/2} + Z_{\beta})^2 / [\ln(\lambda_C / \lambda_T)]^2$$

where the values of $\lambda_{\rm C}$ and $\lambda_{\rm T}$ are given by ${\rm H_a}$

Time to Event Outcomes

When subjects are recruited over a period of time and the study ends when some subjects have not had the event, sample size calculations are more complex

Lachin¹ gives a general formula

$$\mathbf{n} = (\mathbf{Z}_{\alpha/2} + \mathbf{Z}_{\beta})^{2} [\varphi(\lambda_{\mathrm{T}}) + \varphi(\lambda_{\mathrm{C}})] / (\lambda_{\mathrm{T}} - \lambda_{\mathrm{C}})^{2}$$

Important Point. The sample size depends on the recruitment and follow-up schedules

The logrank Test

The standard nonparametric test for comparing two distributions is the logrank test.

Interestingly, sample size formulas for the logrank test are closely related to those that apply when the times-to-event follow an exponential distribution

Event-Driven Trials

For the logrank test, the power of the study depends on the number of events observed. This has led to the concept of the event-driven trial.

Schoenfeld⁹ showed that, if the logrank test will be used to compare two time-to-event distributions, the number of events required to achieve power of 1 - β is

$$\mathbf{d} = \mathbf{4}(\mathbf{Z}_{\alpha/2} + \mathbf{Z}_{\beta})^2 / [\ln(\lambda_{\rm C}/\lambda_{\rm T})]^2$$

What To Do if the Estimated Sample Size is not Feasible

- 1. Check your method and your calculations
- 2. Is the effect size unreasonably small or the assumed variance too large?
- 3. Is it reasonable to increase Type 1 or Type 2 error?
- 4. Choose continuous primary outcomes
- 5. Choose outcomes that have smaller variance
- 6. Consider surrogate variables
- Choose binary outcomes that are more common

Be realistic! An underpowered study is a bad investment for everyone

What to Do if you Don't Have the Necessary Information

- 1. Search the literature carefully
- 2. Use approximate methods to estimate missing variables

For approximately normal variables, the standard deviation is approximately 1/4 of the range of common values

- 3. Conduct a pilot study
- 4. Dichotomize the variable
- 5. Make an educated guess

Sources for Sample Size Determination

Though most sample size calculations follow a pattern based on a normal approximation to the test statistic, details are always a bit complicated.

Sample size calculations often account for nonadherence and loss-to-follow-up

It's best to find a reliable source and obtain sample sizes by formula or table.

Software

PS – Free Software from Vanderbilt

http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize

STATA

EAST

PASS

Web Resources

UCLA http://calculators.stat.ucla.edu/powercalc/

Normal, Exponential, Binomial, Poisson Sample Size and Power Calculations

MGH: http://hedwig.mgh.harvard.edu/sample_size/size.html Binomial (Parallel or Cross-over Trial) Normal (Parallel or Cross-over Trial) Time to Event

Statpages: http://statpages.org/

An excellent compendium of online statistical tools

Literature Sources for Sample Size Formulas and Tables

Binary Outcomes

Measured Outcomes Nonparametric Test Parametric Tests

Time to Event Outcomes

References 2 – 4

Reference 5 References 6 – 9

References 10-11

References

- 1. Lachin JM. Introduction to sample size determination and power analysis for clinical trials. *Control Clin Trials* 1981;2:93–113.
- 2. Fleiss JL. Statistical Methods for Rates and Proportions. New York: Wiley, 1981. pp 38-48.
- 3. Feigl P. A graphical aid for determining sample size when comparing two independent proportions. *Biometrics.* 1978; 34:111-122.
- 4. Casagrande JT, Pike MC, Smith PG. The power function of the exact test for comparing two binomial distributions. *Appl Stat.* 1976; 27;176-180.
- 5. Lehmann EL. Nonparametrics: Statistical Methods Based on Ranks. San Francisco: Holden-Day, 1975.
- 6. George SL, Desu MM. Planning the size and duration of a clinical trial studying time to some critical event. *J Chron Dis.* 1974; 27:15-24.
- 7. Lesser ML, Cento SJ. Tables of power for the F-test for comparing two exponential survival distributions. *J Chron Dis.* 1981; 34-533-544.
- 8. Bernstein D, Lagakos SW. Sample Size and power determination for stratified clinical trials. *J Stat Comput Simul.* 1978; 8:65-73.
- 9. Schoenfeld DA. Sample-size formula for the proportional-hazards regression model. *Biometrics* 1983;39:499–503.
- 10. Peto R, Pike MC, Armitage P, et al. Design and analysis of clinical trials requiring prolonged observation of each patient. *Br J Cancer. Part I* 1976; 34:585-612. Part II *1977; 35:1-39.*
- 11. Freedman LS. Tables of the number of patients required in clinical trials using the logrank test. *Stat in Med.* 1982; 1:121-129.
- 12. Friedman LM, Furber CD, DeMets DL. Fundamentals of Clinical Trials, Fourth Edition, Springer, New York, 2010.