Umesh V. Vazirani University of California, Berkeley

Lecture 3: Axioms of QM, two Qubits, Entanglement

K-level systems, bra-ket notation

K-level system:

Energy of an electron in an atom

|4) second excited state first excited state ground state Measurement A_{x} , on: $P[j] = |\alpha_j|^2$ New State = 14'> = 1j>

$$|0\rangle, 11\rangle, \dots, 1^{K-1}\rangle$$
Superposition Principle:

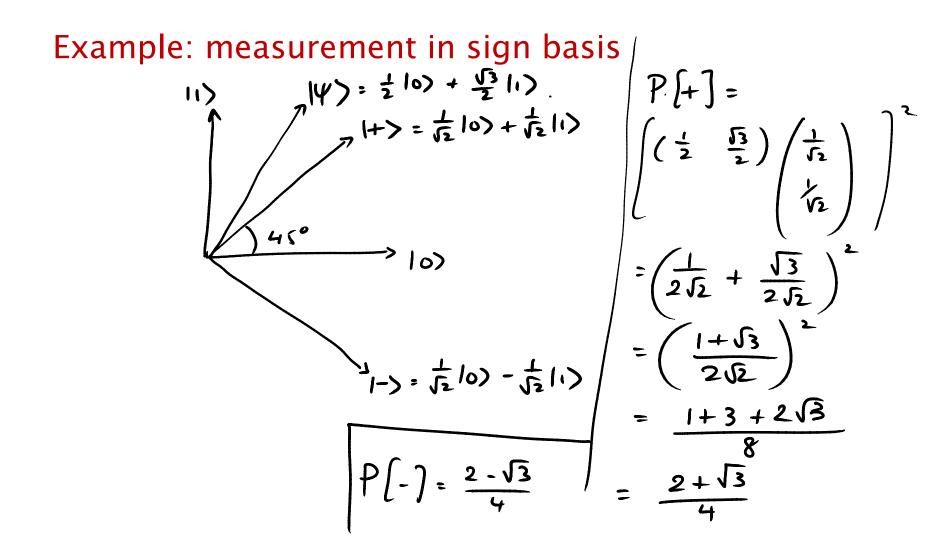
$$|\Psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle + \dots + \alpha_{K+1}|k-1\rangle$$

$$\alpha_i \in \mathbb{C}$$

$$\sum_{j=0}^{K} |\Psi_j|^2 = 1$$

$$|\Psi\rangle = (\frac{1}{2} + \frac{1}{2})|0\rangle - \frac{1}{2}|1\rangle + \frac{1}{2}|2\rangle$$
Measure:

$$P[0] = \frac{1}{2} |\Psi'\rangle = |0\rangle$$

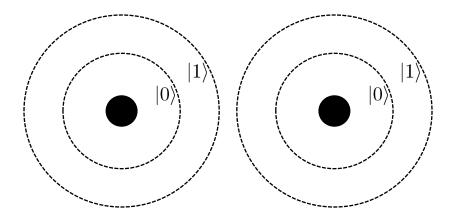

$$P[1] = h_1 |\Psi'\rangle = |1\rangle$$

$$P[2] = \frac{1}{2} |\Psi'\rangle = |2\rangle.$$

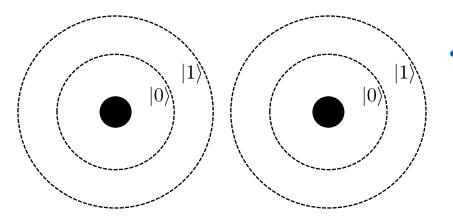
K-level system, Geometric Interpretation:

Superposition Principle:
$$|\Psi\rangle \in \mathbb{C}^{K}$$

State is a unit vector in a
Hilbert space \mathbb{C}^{K} .
 $|2\rangle \qquad |\Psi\rangle = \alpha'_{0}|0\rangle + \alpha'_{1}|1\rangle + \alpha'_{2}(2) = \begin{pmatrix} \alpha'_{0} \\ \alpha'_{1} \end{pmatrix} \in \mathbb{C}^{3}$
 $|1\rangle \qquad |1\rangle \qquad |1\rangle = \begin{pmatrix} \alpha'_{0} \\ \alpha'_{2} \end{pmatrix} = \begin{pmatrix} \alpha'_{0} \\ \alpha'_{2} \end{pmatrix} \in \mathbb{C}^{3}$
 $|1\rangle \qquad |1\rangle = \begin{pmatrix} \alpha'_{0} \\ \alpha'_{2} \end{pmatrix} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \end{pmatrix}$
 $|1\rangle = \begin{pmatrix} \alpha'_{0} \\ \alpha'_{2} \end{pmatrix} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \end{pmatrix}$
 $|1\rangle = \begin{pmatrix} \alpha'_{0} \\ \alpha'_{2} \end{pmatrix} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \end{pmatrix}$
 $|1\rangle = \begin{pmatrix} \alpha'_{0} \\ \alpha'_{2} \end{pmatrix} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \end{pmatrix}$
 $|1\rangle = \begin{pmatrix} \alpha'_{0} \\ \alpha'_{2} \end{pmatrix} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \end{pmatrix}$
 $|1\rangle = \begin{pmatrix} \alpha'_{0} \\ \alpha'_{2} \end{pmatrix} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \end{pmatrix}$
 $|1\rangle = \begin{pmatrix} \alpha'_{0} \\ \alpha'_{2} \end{pmatrix} = \begin{pmatrix} \beta_{0} \\ \beta'_{1} \end{pmatrix}$
 $|1\rangle = \begin{pmatrix} \alpha'_{0} \\ \alpha'_{2} \end{pmatrix} = \begin{pmatrix} \beta'_{0} \\ \beta'_{1} \end{pmatrix}$
 $|1\rangle = \begin{pmatrix} \alpha'_{0} \\ \alpha'_{1} \end{pmatrix} = \begin{pmatrix} \beta'_{0} \\ \beta'_{1} \end{pmatrix}$
 $|1\rangle = \begin{pmatrix} \alpha'_{0} \\ \beta'_{1} \end{pmatrix} = \begin{pmatrix} \beta'_{0} \\ \beta'_{1} \end{pmatrix}$


Example: measurement in sign basis 14)= 之い+ジル $|\psi\rangle = \alpha |+\rangle + \beta |-\rangle$ ハトン= たしつ+ たい 10)= 1+> + 1-> 11)= 左1+> - 左1-> $|\psi\rangle = \frac{1}{2} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right)$ 0 + (1/2 1+> - + 1->) $|-) = \frac{1}{(210)} - \frac{1}{(211)}$ $\frac{1+\sqrt{3}}{2\sqrt{2}} + + \frac{1-\sqrt{3}}{2\sqrt{2}} + \frac{1-\sqrt{3}}$ $\frac{1+3+2\sqrt{3}}{2} = \frac{2+\sqrt{3}}{2}$

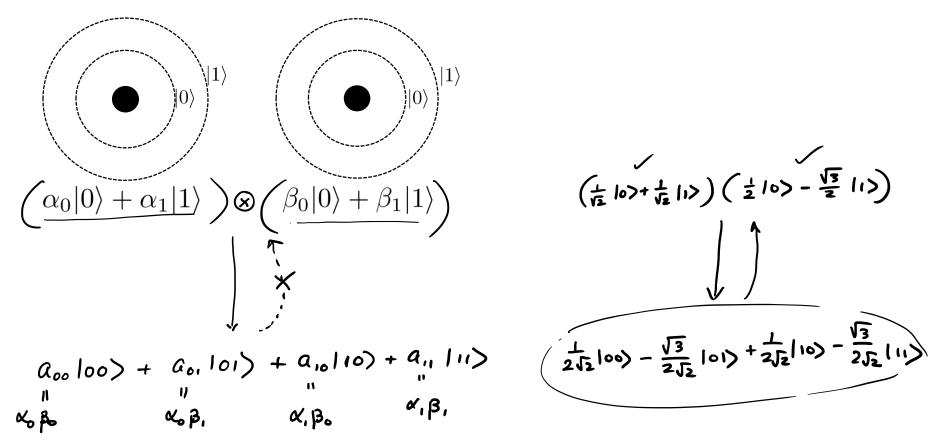
Umesh V. Vazirani University of California, Berkeley


Lecture 3: Axioms of QM, two Qubits, Entanglement

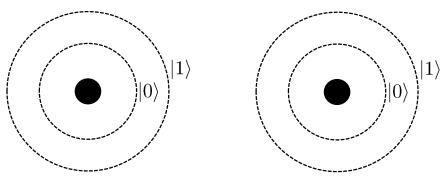
Two Qubits

Two Qubits

Partial Measurement

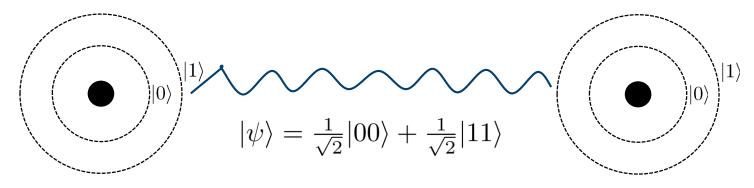

• What is the result of measuring just the first qubit?

Umesh V. Vazirani University of California, Berkeley


Lecture 3: Axioms of QM, two Qubits, Entanglement

Entanglement

Composite System



Bell State

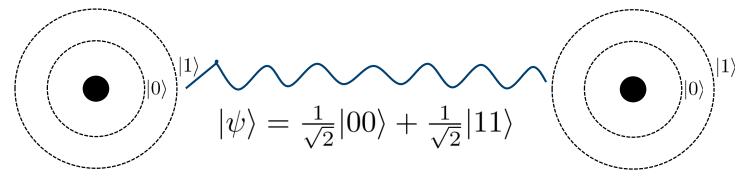
 $|\psi\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$ $\begin{pmatrix} \alpha_{0} \mid 0 \end{pmatrix} + \alpha_{1} \mid 1 \end{pmatrix} \begin{pmatrix} \beta_{0} \mid 0 \end{pmatrix} + \beta_{1} \mid 1 \end{pmatrix}$ $\begin{pmatrix} \alpha_{0} \mid 0 \end{pmatrix} + \alpha_{0} \mid \beta_{1} \mid 0 \end{pmatrix} + \alpha_{0} \mid \beta_{0} \mid 10 \end{pmatrix} + \left(\alpha_{1} \mid \beta_{1} \mid 1 \right)$ $\begin{pmatrix} \alpha_{0} \mid \beta_{0} \mid 0 \end{pmatrix} + \alpha_{0} \mid \beta_{1} \mid 0 \end{pmatrix} + \left(\alpha_{1} \mid \beta_{1} \mid 1 \right)$ $\begin{pmatrix} \alpha_{0} \mid \beta_{0} \mid 0 \end{pmatrix} + \left(\alpha_{0} \mid \beta_{1} \mid 0 \right) + \left(\alpha_{1} \mid \beta_{1} \mid 1 \right)$ $\begin{pmatrix} \alpha_{0} \mid \beta_{0} \mid 0 \end{pmatrix} + \left(\alpha_{0} \mid \beta_{1} \mid 0 \right) + \left(\alpha_{1} \mid \beta_{1} \mid 1 \right)$ $\begin{pmatrix} \alpha_{0} \mid \beta_{0} \mid 0 \end{pmatrix} + \left(\alpha_{0} \mid \beta_{1} \mid 0 \right) + \left(\alpha_{1} \mid \beta_{1} \mid 1 \right)$ $\begin{pmatrix} \alpha_{0} \mid \beta_{0} \mid 0 \end{pmatrix} + \left(\alpha_{0} \mid \beta_{1} \mid 0 \right) + \left(\alpha_{1} \mid \beta_{1} \mid 1 \right)$ $\begin{pmatrix} \alpha_{0} \mid \beta_{0} \mid 0 \end{pmatrix} + \left(\alpha_{0} \mid \beta_{1} \mid 0 \right) + \left(\alpha_{1} \mid \beta_{1} \mid \beta_{$ x, B, x, B, to

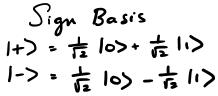
Measuring the Bell State

Measure: $P[00] = \frac{1}{2}$ $P[11] = \frac{1}{2}$.

 $P[o] = \frac{1}{2} \qquad New state = 100 > \qquad P[o] = \frac{1}{2}$ $P[i] = \frac{1}{2} \qquad New state = 111 > \qquad P[i] = \frac{1}{2}$

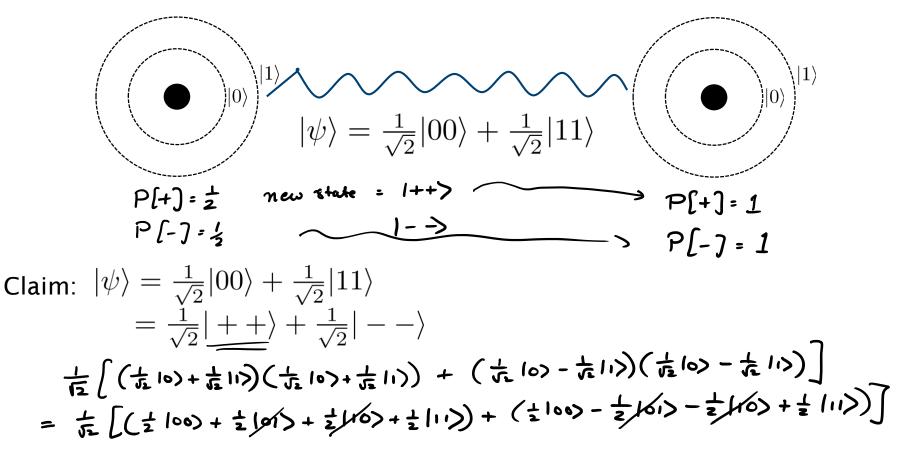
Covalent bond: <u>Spin</u> ~olt>+~1/2) たしたし>- たしキシ たしの>- たしの> "I would not call [entanglement] *one* but rather *the* characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought."

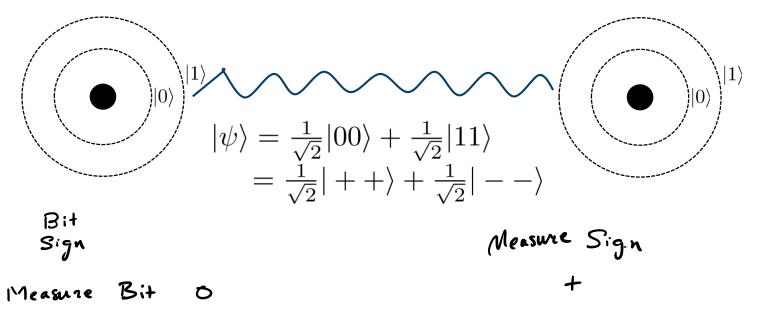

Erwin Schrödinger (1935)


Umesh V. Vazirani University of California, Berkeley

Lecture 3: Axioms of QM, two Qubits, Entanglement

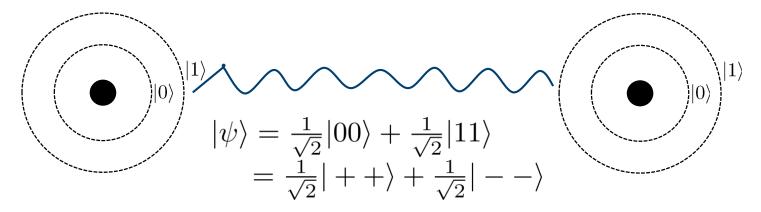
EPR Paradox


Measuring Bell State in sign basis



Re-writing Bell State in sign basis

Einstein, Podolsky, Rosen (EPR) Paradox (1935)



Local realism

It is inconceivable that inanimate Matter should, without the mediation of something else, which is not material, operate upon, and affect other matter without mutual contact.

I think that matter must have a separate reality independent of the measurements. That is an electron has spin, location and so forth even when it is not being measured. I like to think that the moon is there even if I am not looking at it. Albert Einstein

Einstein, Podolsky, Rosen (EPR) Paradox (1935)

Measure Bit: 0

Measure sign: +

New state 100> " (10>) (10>)