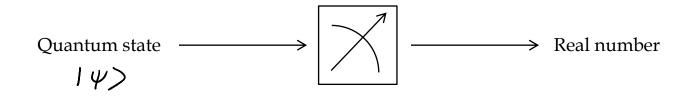
Quantum Mechanics & Quantum Computation

Umesh V. Vazirani University of California, Berkeley

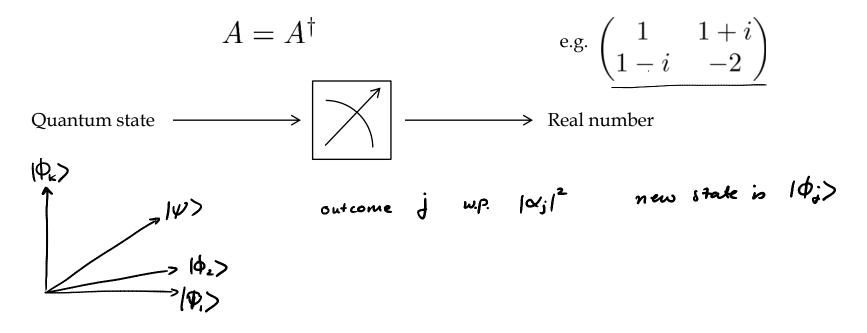
Lecture 12: Observables and Schrödinger's equation

Observables (part 1)

• An **observable** is a quantity like energy, position, momentum



- Suppose we have a k-level system: $|\psi
 angle\in\mathbb{C}^k$
- An observable A for this system is an operator: a kxk Hermitian matrix.



• An observable A for a k-level system is an operator: a kxk Hermitian matrix.

$$A = A^{\dagger} \qquad \qquad \text{e.g.} \begin{pmatrix} 1 & 1+i \\ 1-i & -2 \end{pmatrix}$$

What's special Hermitian matrices? Spectral theorem!

A has orthonormal eigenvectors $|\phi_1\rangle, \ldots, |\phi_k\rangle$ with real eigenvalues $\lambda_1, \ldots, \lambda_k$ $A|\phi_i\rangle = \lambda_i |\phi_i\rangle$ $|\psi\rangle = \alpha_i |\phi_i\rangle + \cdots + \alpha_k |\phi_k\rangle$ $\psi = \alpha_i |\phi_i\rangle + \cdots + \alpha_k |\phi_k\rangle$ $\psi = \alpha_i |\phi_i\rangle + \cdots + \alpha_k |\phi_k\rangle$ $\psi = \alpha_i |\phi_i\rangle + \cdots + \alpha_k |\phi_k\rangle$ $\psi = \alpha_i |\phi_i\rangle + \cdots + \alpha_k |\phi_k\rangle$ $\psi = \alpha_i |\phi_i\rangle + \cdots + \alpha_k |\phi_k\rangle$ $\psi = \alpha_i |\phi_i\rangle + \cdots + \alpha_k |\phi_k\rangle$ $\psi = \alpha_i |\phi_i\rangle + \cdots + \alpha_k |\phi_k\rangle$ $\psi = \alpha_i |\phi_i\rangle + \cdots + \alpha_k |\phi_k\rangle$ $\psi = \alpha_i |\phi_i\rangle + \cdots + \alpha_k |\phi_k\rangle$ $\psi = \alpha_i |\phi_i\rangle + \cdots + \alpha_k |\phi_k\rangle$ $\psi = \alpha_i |\phi_i\rangle + \cdots + \alpha_k |\phi_k\rangle$ $\psi = \alpha_i |\phi_i\rangle + \cdots + \alpha_k |\phi_k\rangle$ $\psi = \alpha_i |\phi_i\rangle + \cdots + \alpha_k |\phi_k\rangle$ $\psi = \alpha_i |\phi_i\rangle + \cdots + \alpha_k |\phi_k\rangle$ $\psi = \alpha_i |\phi_i\rangle + \cdots + \alpha_k |\phi_k\rangle$

- Example $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$.
- $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} t_{2} \\ t_{2} \end{pmatrix} = \begin{pmatrix} t_{1} \\ t_{2} \\ t_{2} \end{pmatrix} \begin{pmatrix} 0 \\ t_{2} \\ t_{2} \end{pmatrix} = \begin{pmatrix} -t_{2} \\ t_{2} \\ t_{2} \\ t_{2} \end{pmatrix} = \begin{pmatrix} -t_{2} \\ t_{2} \\ t_{2} \\ t_{2} \end{pmatrix} = \begin{pmatrix} -t_{2} \\ t_{2} \\ t_{2} \\ t_{2} \end{pmatrix} = \begin{pmatrix} -t_{2} \\ t_{2} \\ t_{2} \\ t_{2} \\ t_{2} \end{pmatrix} = \begin{pmatrix} -t_{2} \\ t_{2} \\ t_{2} \\ t_{2} \\ t_{2} \end{pmatrix} = \begin{pmatrix} -t_{2} \\ t_{2} \\ t_{2} \\ t_{2} \\ t_{2} \\ t_{2} \end{pmatrix} = \begin{pmatrix} -t_{2} \\ t_{2} \\ t_{2}$ • Observable $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ erectors: 1+>, 1-> evalues: 1 -1

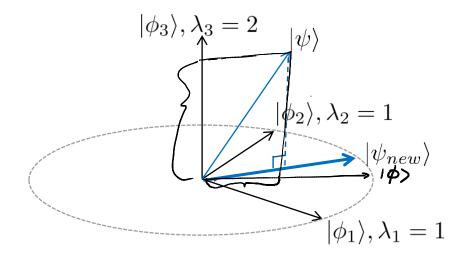
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \frac{\alpha + \beta}{\sqrt{2}}|+\rangle + \frac{\alpha - \beta}{\sqrt{2}}|-\rangle$$

$$1 \quad w.p. \quad \left|\frac{\alpha + \beta}{\sqrt{2}}\right|^{2} \qquad new \quad state = 1+\rangle$$

$$-1 \quad wp \quad \left|\frac{\alpha - \beta}{\sqrt{2}}\right|^{2} \qquad new \quad state = 1-\rangle$$

$$\mathcal{E} \times pected \quad outcome = 1 \cdot \left|\frac{\alpha + \beta}{\sqrt{2}}\right|^{2} + -1 \cdot \left|\frac{\alpha - \beta}{\sqrt{2}}\right|^{2}$$

• Repeated eigenvalues?



What happens if the measurement outcome is 1?

$$A |\phi\rangle = aDagstic collapse the $|\phi_1\rangle$ or $|\phi_2\rangle$?
It gets projected into the eight space.$$

• What happens if we measure a quantum system with respect to the observable I?

$$\underline{\mathsf{I}} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

Quantum Mechanics & Quantum Computation

Umesh V. Vazirani University of California, Berkeley

Lecture 12: Observables and Schrödinger's equation

Observables (part 2)

• An observable A for a k-level system is an operator: a kxk Hermitian matrix.

$$A = A^{\dagger} \qquad \qquad \text{e.g.} \begin{pmatrix} 1 & 1+i \\ 1-i & -2 \end{pmatrix}$$

• Measure in eigenbasis:

A has orthonormal eigenvectors $|\phi_1
angle,\ldots,|\phi_k
angle$ with real eigenvalues $\lambda_1,\ldots,\lambda_k$

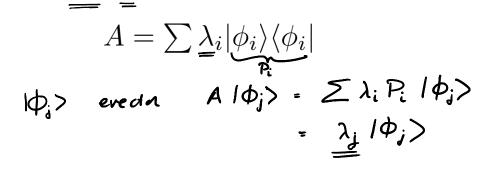
$$A|\phi_i\rangle = \lambda_i |\phi_i\rangle$$

- How general is this?
- Suppose we wish to measure in an arbitrary basis $|\phi_1\rangle, \ldots, |\phi_k\rangle$ and want arbitrary real outcomes $\lambda_1, \ldots, \lambda_k$ is there an observable A with corresponding eigenvectors and eigenvalues?

$$\frac{\mathcal{E}_{xample}}{\lambda_{1} = +1} \qquad |\phi_{1}\rangle = \pm |\phi\rangle + \frac{1}{\sqrt{2}} |\phi\rangle \qquad |\phi_{2}\rangle = \pm |\phi\rangle - \frac{1}{\sqrt{2}} |\phi\rangle \\
\frac{\lambda_{1} = +1}{\lambda_{1} = +1} \qquad \lambda_{2} = -1.$$

$$\frac{A}{|\phi\rangle} \qquad project \quad mto \quad |\phi\rangle \qquad \underline{P} \\
P = |\phi\rangle < \phi| \qquad P|\psi\rangle = |\phi\rangle \langle \phi|||\psi\rangle = \langle \phi||\psi\rangle |\phi\rangle \\
\frac{A}{|\phi\rangle} = \frac{1}{|\phi\rangle} \langle \phi|| + (-1)|\phi_{2} \times \phi_{2}| \\
\frac{A}{|\phi\rangle} = \frac{1}{|\phi\rangle} \langle \phi_{1}| + (-1)|\phi_{2} \times \phi_{2}| \\
\frac{A}{|\phi\rangle} = \frac{1}{|\phi\rangle} \langle \phi_{1}| - |\phi_{2} \times \phi_{2}| \frac{|\phi\rangle}{|\phi\rangle} = \frac{1}{|\phi\rangle} \langle \phi_{1}| \phi_{1}\rangle - \frac{1}{|\phi_{2} \times \phi_{2}| \phi_{2}| \phi_{2}} \\
\frac{A}{|\phi\rangle} = \frac{1}{|\phi\rangle} \langle \phi_{1}| - |\phi\rangle \langle \phi_{2}| \phi_{2}| \phi_{2}\rangle \\
A = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} \psi_{1} & \psi_{2} \\ i & \phi_{2} \end{pmatrix} = \begin{pmatrix} -\psi_{2} \\ i & \phi_{2} \end{pmatrix} = \frac{1}{|\phi\rangle} \langle \phi_{1}| \phi_{2}\rangle \\
A = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{pmatrix} = \frac{1}{|\phi\rangle} \langle \phi_{2}| \phi_{2}\rangle \\
A = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{pmatrix} = \frac{1}{|\phi\rangle} \langle \phi_{2}| \phi_{2}\rangle \\
A = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \psi_{2} \\ \psi_{2} \\ \psi_{2} \\ \psi_{2} \end{pmatrix} = \frac{1}{|\phi\rangle} \langle \phi_{1}| \phi_{2}\rangle \\
A = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \psi_{$$

• In general: Given $|\phi_i\rangle, \underline{\lambda_i}$ corresponding observable is:



orthonormal basis conservable.

Quantum Mechanics & Quantum Computation

Umesh V. Vazirani University of California, Berkeley

Lecture 12: Observables and Schrödinger's equation

Schrödinger's equation (part 1)

Axiom of unitary evolution

• Unitary evolution axiom: a quantum system evolves by a unitary rotation of the Hilbert space.

 $UU^{\dagger} = U^{\dagger}U = I$

• But... by *which* unitary rotation?

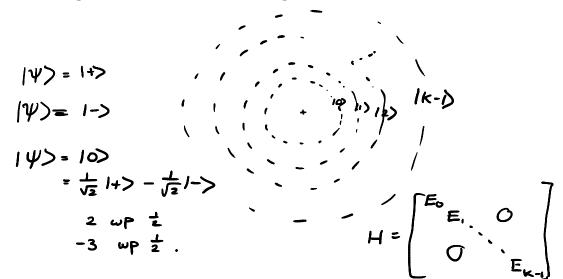
This is described by **Schrödinger's equation**, "the quantum equation of motion"

Schrödinger's equation

- Energy observable H, called the Hamiltonian of the system.
 - Its eigenvectors $|\phi_i
 angle$'s are the states with definite energy.
 - The eigenvalues λ_i 's are the energy of the corresponding state.

• Example
$$H = \begin{pmatrix} -\frac{1}{2} & \frac{5}{2} \\ \frac{5}{2} & -\frac{1}{2} \end{pmatrix}$$
 $|\Psi\rangle = V$

- $|+\rangle$ with energy = 2
- $|-\rangle$ with energy = -3



Schrödinger's equation

• Schrödinger's equation:

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H |\psi(t)\rangle$$
Given $|\psi(o)\rangle$, H figure out $|\psi(e)\rangle$
 $i = \sqrt{-1}$
 $\frac{1}{k}$ reduced Planck constant $\frac{1}{k} = \frac{h}{2\pi}$
Planck relation $\underline{\underline{F}} = h v$
 $\frac{1}{k} = 6.26 \times 10^{-34} T_{s}$
 $\frac{1}{k} = 1.055 \times 10^{-34} T_{s}$
 $= 6.58 \times 10^{-6} eV.s$

Solving Schrödinger's equation

$$i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle = \underline{H}|\underline{\psi(t)}\rangle$$

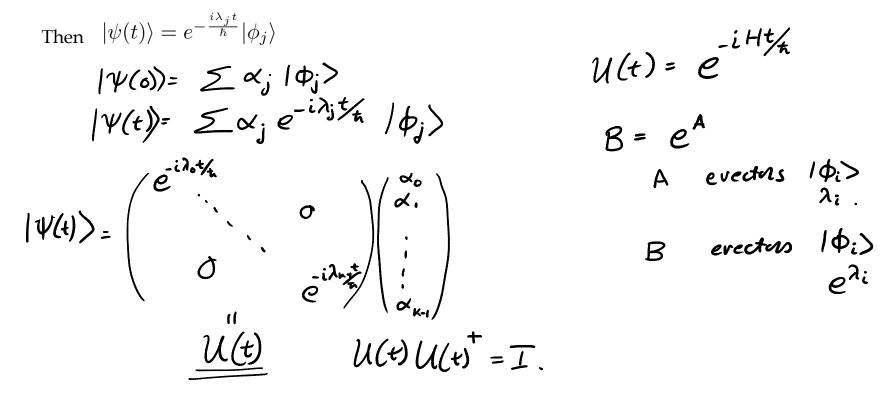
 $|\psi(0)
angle = |\phi_j
angle$ where $|\phi_j
angle$ is some eigenvector of H with a corresponding eigenvalue $|\lambda_j
angle$

Then
$$|\psi(t)\rangle = \frac{e^{-\frac{i\lambda_{j}t}{\hbar}}}{|\phi_{j}\rangle}$$
 route of precession $\propto energy$.
 $H |\phi_{j}\rangle = \lambda_{j} |\phi_{j}\rangle \implies |\psi(t)\rangle = \underline{a(t)} |\phi_{j}\rangle$
 $i \pm \frac{\partial}{\partial t} (a(t) |\phi_{j}\rangle) = H a(t) |\phi_{j}\rangle$
 $\left[i \pm \frac{\partial}{\partial t} a(t)\right] |\phi_{j}\rangle = \underline{a(t)} \lambda_{j} |\phi_{j}\rangle$
 $i \pm \frac{\partial a(t)}{\partial t} = a(t) \lambda_{j}$
 $\frac{\partial a(t)}{\partial t} = -i\lambda_{j} dt \int ln a(t) = -\frac{i\lambda_{j}t}{\pm} = \alpha(t) = e^{-\frac{i\lambda_{j}t}{\pm}}$

Solving Schrödinger's equation

$$i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle = H|\psi(t)\rangle$$

 $|\psi(0)\rangle = |\phi_j\rangle$ where $|\phi_j\rangle$ is some eigenvector of H with a corresponding eigenvalue $|\lambda_j\rangle$



Solving Schrödinger's equation

 $i\hbar\frac{\partial}{\partial t}|\psi(t)
angle = H|\psi(t)
angle$

In general:
$$|\psi(0)\rangle = \sum_{j} \alpha_{j} |\phi_{j}\rangle$$

 $|\psi(t)\rangle = \sum_{j} \alpha_{j} e^{-\frac{i\lambda_{j}t}{\hbar}} |\phi_{j}\rangle$
In the eigenbasis, we can write $= \mathcal{U}(t)$
 $|\psi(t)\rangle = \begin{pmatrix} e^{-\frac{i\lambda_{1}t}{\hbar}} & 0\\ & \ddots\\ & 0 & e^{-\frac{i\lambda_{k}t}{\hbar}} \end{pmatrix} |\psi(0)\rangle$
 $B = e^{A}$
 B has some evectors
 β unitary $U(t) = e^{-\frac{iHt}{\hbar}}$ (shorthand notation)
 $ivalue \ A \ B = e^{\lambda_{j}}$

Schrödinger's equation

 $i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle = H|\psi(t)\rangle$

In general: $|\psi(0)\rangle = \sum \alpha_i |\phi_i\rangle$ $|\psi(t)\rangle = \sum \alpha_{i} e^{-\frac{i\lambda_{j}t}{\hbar}} |\phi_{i}\rangle$ Example $|\psi(0)\rangle = |0\rangle$ $H = X = \begin{pmatrix} \circ & i \\ i & \circ \end{pmatrix}$ What is $|\psi(t)\rangle$? |+> , 1 |-> , -1.

$$\begin{split} |\Psi(o)\rangle &= |o\rangle = \frac{1}{12} = \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{1}{12} \\ |\Psi(t)\rangle &= \frac{1}{12} e^{-\frac{1}{12}t_{h}} + \frac{1}{12} e^{\frac{1}{12}t_{h}} + \frac{1}{12} e^{\frac{1}{12}t_{h}} + \frac{1}{12} e^{\frac{1}{12}t_{h}} \\ &= \frac{1}{12} \frac{1}{12} + \frac{1}{12} e^{\frac{1}{12}t_{h}} + \frac{1}{12} e^{\frac{1}{12}t_{h}} \\ &= -\frac{1}{12} \frac{1}{12} \\$$