CS 188: Artificial Intelligence

Markov Decision Processes

Dan Klein, Pieter Abbeel

University of California, Berkeley

Non-Deterministic Search

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= |fthere is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Gridworld examples: Stuart Russell

Grid World Actions

Deterministic Grid World

Stochastic Grid World

Markov Decision Processes

= An MDP is defined by:

= Asetof statess [1S

= Aset of actionsa [JA

= Atransition function T(s,a,s’)
= Probthatafromsleadstos’,i.e., P(s’] s,a)
= Also called the model or the dynamics

= Areward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

= Astart state

= Maybe a terminal state

= MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= We'll have a new tool soon

What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(Si41 = 8|St = s, Ay = a4, Si—1 = s4-1, Ai—1,... S0 = S0)

Andrey Markov
P(Si11 = §'|Sy = s¢, Ay = ay) (1856-1922)

= This is just like search, where the successor function could only
depended on the current state (not the history)

Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal policy Tt*: S > A
= A policy Ttgives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

Expectimax didn’t compute entire policies
= |t computed the action for a single state only

Optimal Policies

OOEE =
4 '

- | - ‘ - | - | -
R(s) =-0.01 R(s) =-0.03
| | | |
= INEE

R(s)=-0.4 R(s) =-2.0

Example: Racing

Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated

Two actions: Slow, Fast
0.5 +1

Going faster gets double reward
Fast

Slow

-10

0.5

Fast 05 +2

05 Overheated

+2

Racing Search Tree

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

As —Jp sis a state

-
I
L

e

21
. (s,a)isa

g-state
(s,a,s”) called a transition

T(s,a,s’) =P(s’s,a)

R(s,a,s’) '?5\

Utilities of Sequences

Utilities of Sequences

= What preferences should an agent have over reward sequences?

= Moreorless? [1,2,2] or [2,3,4]

= Now or later? [0, 0, 1] or [1,0,0]

Discounting

" |t's reasonable to maximize the sum of rewards
® |t’s also reasonable to prefer rewards now to rewards later
= One solution: values of rewards decay exponentially

v\
) <

Y

1 g v
Worth Now Worth Next Step Worth In Two Steps
Discounting

= How to discount?

= Each time we descend a level, we N A e
multiply in the discount once v\ 1
= Why discount?
= Sooner rewards probably do have P 7 -
higher utility than later rewards 'E* fy

= Also helps our algorithms converge -

= Example: discount of 0.5 A

= U([1,2,3]) =1*1 +0.5*%2 + 0.25*3 I ,72

= U([1,2,3]) < U([3,2,1])

Stationary Preferences

= Theorem: if we assume stationary preferences: s

A

(g, az, ..] = [br,ba,..] 3
: b

[T? a1,az,..] ~ [7’, bl,bQ, ..]

= Then: there are only two ways to define utilities
= Additive utility: U([’ro, T1,7T2,..]) =) + 1 + ro + ...

= Discounted utility: U([rg,71,72,...]) =10+ ~vr1 +~%ro---

Infinite Utilities?!

= Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

» Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (Ttdepends on time left)

= Discounting:use0<y<1

U([rg,...7o0]) = Z ’Ytrt < Rmax/(1 —7)
t=0

= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

= Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount y)

= MDP guantities so far:
= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

s’

Solving MDPs

10

Optimal Quantities

= The value (utility) of a state s:

V*(s) = expected utility starting in s and sisa
acting optimally state
S (s,a)isa
= The value (utility) of a g-state (s,a): g-state
Q’(s,a) = expected utility starting out o N
having taken action a from state s and 'Ersaisﬁt?oli a

(thereafter) acting optimally

= The optimal policy:
Tt (s) = optimal action from state s

[demo — gridworld values]

Values of States

= Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
= This is just what expectimax computed!

= Recursive definition of value:
V*(s) = max Q*(s,a) e

Q*(s,a) = Z T(s,a,s) [R(& a,s’) + ’yV*(S/)}

V*(s) = maaXZT(s, a,s) {R(s, a,s') + ’yV*(s’)}

S

11

Racing Search Tree

Racing Search Tree

12

Racing Search Tree

= We're doing way too much &
work with expectimax!

4

@y &y

= Problem: States are repeated
= |dea: Only compute needed

quantities once :

s

T

XA

e & a & e &

o &
= Problem: Tree goes on forever Q m fl fl m fl m

= |dea: Do a depth-limited ‘{ i ERER % [

computation, but with increasing
= Note: deep parts of the tree

eventually don’t matterify<1 TR T TR

VLI T

Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps
= Equivalently, it's what a depth-k expectimax would give from s

v
;

Y Hd & ad ads &

Va(

if“':q

~—

[demo — time-limited values]

13

Computing Time-Limited Values

Vil) Vi(@) Vy(as) i
Va(dn) Va(@m) Vi(as)
Vo(ae) Vo(dm) Vo(as)

J

Vi(de) Vi(@) Vi(as)
Vo(am) Vo(am) Vo(as)

[Y el ;
T A T T T TR
\

11811

Value lteration

14

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vip1(8) < max > T(s,a,5) |R(s,a,5) +7Vi(s)]

S

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Example: Value Iteration

(N\
Va 3.5 2.5 0
. J
- ~ Q- Fast 0.5 +2 :
Vi 2 1 0 . +2‘ Overheated
|\ J
Assume no discount!
()\
1%
"0 0 0 | v« max T 7Gs,0,8) [Rls,a,8) + 7 Vi)
/

s

15

Convergence*

How do we know the V, vectors are going to converge?

Vi (s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

Sketch: For any state V, and V,,, can be viewed as depth
k+1 expectimax results in nearly identical search trees

The difference is that on the bottom layer, V,,; has actual
rewards while V| has zeros

That last layer is at best all Ry«

Itis at worst R,y / \

But everything is discounted by y* that far out
So V, and V,,, are at most y* max|R| different
So as k increases, the values converge

Vie+1(s)

CS 188: Artificial Intelligence

Markov Decision Processes ||

Dan Klein, Pieter Abbeel

University of California, Berkeley

16

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned
= 80% of the time, the action North takes the agent North
= 10% of the time, North takes the agent West; 10% East

= |fthere is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of (discounted) rewards

Recap: MDPs

= Markov decision processes:

= StatesS

= Actions A

= Transitions P(s’|s,a) (or T(s,a,s’))
Rewards R(s,a,s’) (and discount y)
Start state s,

= Quantities:

= Policy = map of states to actions

= Utility = sum of discounted rewards

= Values = expected future utility from a state (max node)
Q-Values = expected future utility from a g-state (chance node)

17

Optimal Quantities

= The value (utility) of a state s:
V*(s) = expected utility starting in s and

; - sisa
acting optimally state
= The value (utility) of a g-state (s,a): éssfgtf a
Q’(s,a) = expected utility starting out
having taken action a from state s and (s,as)is a
(thereafter) acting optimally transition

= The optimal policy:
Tt (s) = optimal action from state s

[demo — gridworld values]

The Bellman Equations

18

The Bellman Equations

= Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead

relationship amongst optimal utility values T

V*i(s) = max Q*(s,a)
Q*(s,a) =Y T(s,a,s) {R(s,a7 s + 'yV*(s/)]
V*(s) = mC?XZT(s, a,s) [R(s,a, s') + ’)/V*(s/)}

= These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Value lteration

= Bellman equations characterize the optimal values:

V*(s) = maaxZT(s, a,s’) [R(s,a, s + 7V*(s/)}

S

= Value iteration computes them:

Viip1(s) < max 3" T(s,a,8") [R(s,a,s) + Vi (s)]

S

= Value iteration is just a fixed point solution method
= ... though the V| vectors are also interpretable as time-limited values

19

Policy Methods

Policy Evaluation

20

Fixed Policies

Do the optimal action Do what TTsays to do
S
T(S)
s, T(S)
A S A S

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy T1(s), then the tree would be simpler — only one action per state

= ... though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy Tt

VT(s) = expected total discounted rewards starting in s and following Tt

Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)[R(s,m(s),s") + V7 (s)]

S

21

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

- - e
Y
L -

-
-10.00 —7.88 »|| -10.00 -10.00 48.74 -10.00
-
-

22

Policy Evaluation

How do we calculate the V’s for a fixed policy 1?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

T(S)
R S T[(S)
VE(s) = 0 \

Vi 1(s) « > T (s,m(s),s)[R(s,m(s),s") + VI (s)] As

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)

Policy Extraction

23

Computing Actions from Values

= Let’s imagine we have the optimal values V*(s)
Wavotaost e]
= |t's not obvious!
ﬂ
We need to do a mini-expectimax (one step) -

7*(s) = arg (gnaxZT(s, a,s)[R(s,a,s") +~V*(s)]

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

= Let’s imagine we have the optimal g-values:

= How should we act?
= Completely trivial to decide!

B

X

DX

7 (s) = argcrbnaxQ*(s,a)

DS
D
<

= |mportant lesson: actions are easier to select from g-values than values!

24

Policy Iteration

Problems with Value Iteration

Value iteration repeats the Bellman updates:

Vi+1(8) mC?XZT(S,a, s") [R(s,a, s + 'ka(s/)}

s/

Problem 1: It's slow — O(S?A) per iteration 88

Problem 2: The “max” at each state rarely changes

Problem 3: The policy often converges long before the values

[demo — value iteration]

25

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t's still optimal!
= Can converge (much) faster under some conditions

Policy Iteration

= Evaluation: For fixed current policy T, find values with policy evaluation:
= [terate until values converge:

Vi1 (s) = ST (s, i), 8) [R(s, mi(s), ") + 7 V()]

= |mprovement: For fixed values, get a better policy using policy extraction
= One-step look-ahead:

mi+1(s) = arg maxZT(s,a, s") [R(s,a, s+ ny”i(s/)]

S

Comparison

= Both value iteration and policy iteration compute the same thing (all optimal values)

= |nvalue iteration:
= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

= |n policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
= The new policy will be better (or we’re done)

= Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

= So you want to....
= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
= Turn your values into a policy: use policy extraction (one-step lookahead)

= These all look the same!
= They basically are — they are all variations of Bellman updates
= They all use one-step lookahead expectimax fragments
= They differ only in whether we plug in a fixed policy or max over actions

27

Double Bandits

Double-Bandit MDP

= Actions: Blue, Red
= States: Win, Lose

No discount
100 time steps

Both states have
the same value

s1

1.0

28

Offline Planning

= Solving MDPs is offline planning
= You determine all quantities through computation
= You need to know the details of the MDP
= You do not actually play the game!

-

Value
Play Red 150
Play Blue 100

.)

No discount
100 time steps

Both states have
the same value

Let’s Play!

$2 52 S0 S2 S2
$2 $2 S0 SO SO

29

Online Planning

= Rules changed! Red’s win chance is different.

Let’s Play!

S0 SO SO $2 SO
$2 S0 SO SO SO

30

What Just Happened?

= That wasn’t planning, it was learning!
= Specifically, reinforcement learning
= There was an MDP, but you couldn’t solve it with just computation
= You needed to actually act to figure it out

® |mportant ideas in reinforcement learning that came up
= Exploration: you have to try unknown actions to get information
= Exploitation: eventually, you have to use what you know
= Regret: even if you learn intelligently, you make mistakes

Sampling: because of chance, you have to try things repeatedly

Difficulty: learning can be much harder than solving a known MDPs

31

