Distributed Algorithms

Models of Distributed Systems
Models

- What is a model?
 - An abstraction of the relevant properties of a system
- Why construct or learn a model?
 - Real world is complex, a model makes assumptions and simplifications
 - Reason about realities in the model
 - Helps us tackle the complexities
 - The model and its properties are expressed in precise mathematical symbols and relationships
Modeling

- What can modeling do for us?
 - Useful when solving problems (e.g. designing an algorithm)
 - When predicting behavior (e.g. cost in number of messages)
 - When evaluating and verifying a solution (e.g. simulation)
- Very important skill
Modeling

- Different types of models:
 - **Continuous** models
 - Often described by differential equations involving variables which take real (continuous) values
 - **Discrete event** models
 - Often described by state transition systems: system evolves, moving from one state to another at discrete time steps
 - This course: a *model of distributed computing (discrete)*
Models of distributed computing

- Biggest challenge when modelling is to choose the *right level of abstraction*!

- The model should be powerful enough to construct *impossibility proofs*
 - A statement about all possible algorithms in a system

- Our model should therefore be:
 - *Precise*: explain all relevant properties
 - *Concise*: explain a class of distributed systems compactly
Input/output Automata
Input/Output Automata

- General mathematical modeling framework for reactive system components
- Designed for describing systems in a modular way
 - Supports description of individual system components, and how they compose to yield a larger system
 - Supports description of systems at different levels of abstraction
I/O Automata

- A distributed algorithm (system) is specified as an Input/Output automaton
- I/O automata models concurrent interacting components
 - Suitable for components that interact asynchronously
- Each I/O automaton is a reactive state-machine:
 - Interacts with environment through actions
 - Makes transitions (state, action, state)
 - $\langle s_i, a, s_{i+1} \rangle$
- Actions, Events
 - Input, Output, Internal
I/O Automata

- A distributed algorithm (system) is specified as an Input/Output automaton
- I/O automata models concurrent interacting components
 - Suitable for components that interact asynchronously
- Each I/O automaton is a reactive state-machine:
 - Interacts with environment through actions
 - Makes transitions (state, action, state)
 - $\langle s_i, a, s_{i+1} \rangle$
- Actions, Events (occurrence of action)
 - Input, Output, Internal
Input Actions

- Actions are named a_1, a_2, \ldots
- Input of automaton A
 - Always enabled
 - Environment E with output action a can always invoke input action a of Automaton A
 - E and A both make a simultaneous transition
- A does not control its input action a
Internal and Output Actions

- Actions are named a_1, a_2, \ldots
- Output, Internal actions of automaton A
 - Conditioned on A’s state
 - Can be blocked until the condition is true
- A controls its internal and output actions
Input/Output Automaton

- Labeled State transition system
 - Transitions labeled by actions
- Actions classified as input, output, internal
 - Input, output are external
 - Output, internal are locally controlled.
Signature, formally

- Signature S
 - \(\text{in}(S), \text{out}(S), \text{and} \ \text{int}(S)\)
 - Input, output and internal actions
- \(\text{in}(S) \cup \text{out}(S) \cup \text{int}(S)\) disjoint
- External actions \(\text{ext}(S)\)
 - \(\text{in}(S) \cup \text{out}(S)\)
- Locally controlled actions \(\text{local}(S)\)
 - \(\text{out}(S) \cup \text{int}(S)\)
Automaton A is a labeled transition System

- $\text{states}(A)$
 - a (not necessarily finite) set of states
- $\text{start}(A)$
 - a nonempty subset of states(A)
- $\text{trans}(A)$ a state-transition relation
 - $\text{trans}(A) \subseteq \text{states}(A) \times \text{acts}(\text{sig}(A)) \times \text{states}(A)$
- For every state s and every input action a, there is a transition $(s, a, s') \in \text{trans}(A)$
- Tasks: local actions are partitions into groups
Executions

- Running an I/O automata generate executions
- Execution
 - A alternating sequence of state and actions
 - The execution of an action is called an event
- Fair Execution
 - Execution where internal and output actions are given infinitely many chances to run
Traces (behaviors)

- External actions
 - Input and output actions
 - “Interesting” behavior of I/O automata is captured by its external actions during executions
- (Fair) Trace
 - Subsequence of fair execution that consists of external actions
- The set of all traces capture interesting behavior of I/O Automata
Automata A Solved P

- A problem P (a distributed abstraction) will be defined as a set of sequences of external actions.
- Automaton A solves problem P
 - The set of fair behaviors of A is a subset of P.
An asynchronous networked system

Example
an asynchronous networked system

- An synchronous network
- Processes communicate via channels
- Processes and channels are
 - “Reactive” components that interact with their environments via input and output actions
- modelled by I/O automata
Processes and channels

P_1 send($m_{1,2}$) $C_{1,2}$ deliver($m_{1,2}$) P_2

P_2 send($m_{2,1}$) $C_{2,1}$ deliver($m_{2,1}$) P_1

init(v_1) decide(v_1)

init(v_2) decide(v_2)
Example: Channel Automaton

- Reliable unidirectional FIFO channel between two processes
 - Fix set of messages M
- Signature
 - Input actions: $send(m), m \in M$
 - Output actions: $deliver(m), m \in M$
 - No internal actions
- States
 - $queue$, a FIFO queue of elements of M, initially empty
Example: Channel Automaton

- Transitions
 - \textit{send}(m):
 - \textit{Effect}: add \textit{m} to (end of) queue
 - \textit{deliver}(m):
 - \textit{precondition}: \textit{m} is first (head) in queue
 - \textit{Effect}: remove \textit{m} from queue
- Tasks: all deliver actions is one task
- Transitions are described using “transition definitions”, which are little code fragments
Example: Channel Automaton

- Transitions
 - `send(m)`:
 - Effect: add m to(end of) queue
 - `deliver(m)`:
 - precondition: m is first (head) in queue
 - Effect: remove m from queue

- Transitions are described using “transition definitions”, which are little code fragments
- Each transition definition describes a set of transitions, for designated actions (grouped by type of action)
Example: Channel Automaton

- Add subscripts to indicate particular endpoints
- Here, the channel is used to connect processes i and j.
- Transitions
 - $\text{send}(m)_{i,j}$:
 - Effect: add m to (end of) queue
 - $\text{deliver}(m)_{i,j}$:
 - precondition: m is first (head) in queue
 - Effect: remove m from queue
A process

A simple agreement protocol

- Inputs arrive from the outside
- Process sends/receives values, collects vector of values, one for each process
- When vector is filled, outputs a decision obtained as a function f on the vector
- Can get new inputs, change values, send and output repeatedly
- Tasks for:
 - Sending to each individual neighbor
 - Outputting decisions
A process signature

- **Input:**
 - \(init(v)_i, \text{ for } v \in V\)
 - \(deliver(v)_{j,i}, v \in V, 1 \leq j \leq n, j \neq i\)

- **Output:**
 - \(decide(v)_i, v \in V\)
 - \(send(v)_{i,j}, v \in V, 1 \leq j \leq n, j \neq i\)

- **States:**
 - \(val\), a vector indexed by \(\{1, \ldots, n\}\) of elements in \(V \cup \{\bot\}\), all initially \(\bot\) (\textbf{null})
Transitions

- $init(v)_i, v \in V: \text{val}(i) := v$ (input)
- $deliver(v)_{j,i}, v \in V : \text{val}(j) := v$ (input)
- $send(v)_{i,j}$: (output)
 - Precondition: $\text{val}(i) = v$
 - Effect: none
- $decide(v)_{i}$: (output)
 - Precondition: for all $1 \leq j \leq n$: $\text{val}(j) \neq \text{null}$
 - $v = f(\text{val}(1), \ldots, \text{val}(n))$
 - Effect: none
Input/output Automata

Executions
Remarks

- A step taken by automaton A is an element of $\text{trans}(A)$
- An action a is enabled in state s if $\text{trans}(A)$ contains a step (s, a, s') for some s'
- I/O automata are always input-enabled
 - Input actions are enabled in every state
 - An automaton cannot control its environment
Executions

- An I/O automaton executes as follows:
 - Start at some start state
 - Repeatedly take step from current state to new state.
- Formally, an execution is a finite or infinite sequence:
 - $s_0 \ a_1 \ s_1 \ a_2 \ s_2 \ a_3 \ s_3 \ a_4 \ s_4 \ a_5 \ s_5 \ ...$ (if finite, ends in state)
 - s_0 is a start state
 - (s_i, a_{i+1}, s_{i+1}) is a step (i.e., in trans)
Executions: Channel Automaton

- Let $M = \{1,2\}$
- Three possible executions
- Any prefix of an execution is also an execution

1. $[\lambda], \text{send}(1)_{i,j}, [1], \text{deliver}(1)_{i,j}, [\lambda], \text{send}(2)_{i,j}, [2], \text{deliver}(2)_{i,j}, [\lambda]$

2. $[\lambda], \text{send}(1)_{i,j}, [1], \text{deliver}(1)_{i,j}, [\lambda], \text{send}(2)_{i,j}, [2]$

3. $[\lambda], \text{send}(1)_{i,j}, [1], \text{send}(1)_{i,j}, [11], \text{send}(1)_{i,j}, [111], \ldots$
Execution Fragments

- An I/O automaton executes as follows:
 - Start at some start state.
 - Repeatedly take step from current state to new state.

- Formally, an execution fragment is a finite or infinite sequence:
 - \(s_0 a_1 s_1 a_2 s_2 a_3 s_3 a_4 s_4 a_5 s_5 \ldots \) (if finite, ends in state)
 - \(s_0 \) is a start state
 - \((s_i, a_{i+1}, s_{i+1})\) is a step (i.e., in trans)
Traces

- Traces allows us to focus on the component’s external behavior
- Useful for defining correctness of an algorithm
- A trace of an execution is the subsequence of external actions in the execution
 - No states, no internal actions
 - Denoted trace(E) where E is an execution
 - Models observable behavior of a component
Traces: Channel Automaton

- Let \(M = \{1, 2\} \)
- Three possible executions and traces
 1. \([\lambda], \text{send}(1)_{i,j}, [1], \text{deliver}(1)_{i,j}, [\lambda], \text{send}(2)_{i,j}, [2], \text{deliver}(2)_{i,j}, [\lambda]\)
 2. \(\text{send}(1)_{i,j}, \text{deliver}(1)_{i,j}, \text{send}(2)_{i,j}, \text{deliver}(2)_{i,j}\)
 3. \([\lambda], \text{send}(1)_{i,j}, [1], \text{deliver}(1)_{i,j}, [\lambda], \text{send}(2)_{i,j}, [2]\)
 4. \(\text{send}(1)_{i,j}, \text{deliver}(1)_{i,j}, \text{send}(2)_{i,j}\)
 5. \([\lambda], \text{send}(1)_{i,j}, [1], \text{send}(1)_{i,j}, [11], \text{send}(1)_{i,j}, [111], \ldots\)
 6. \(\text{send}(1)_{i,j}, \text{send}(1)_{i,j}, \text{send}(1)_{i,j}, \ldots\)
Input/output Automata

Operations on I/O automata
Composition

- Describes how systems are built out of components
- Main operations
 - Composition and hiding of actions
- Composition
 - Putting automata together to form a new automaton
 - Output action of one automaton with the matching input actions of the others
 - All components sharing the same action perform a step together (synchronize on actions)
Composition of channels and processes

\begin{align*}
& \text{Process} \quad \text{send}(m)_{1,2} \\
& \quad \text{channel} \quad C_{1,2} \\
& \quad \text{Process} \quad \text{deliver}(m)_{1,2} \\
& \quad \text{channel} \quad C_{2,1} \\
& \quad \text{Process} \quad \text{send}(m)_{2,1} \\
& \quad \text{deliver}(m)_{2,1} \\
& \quad \text{Process} \\
& \quad \text{init}(v)_1 \quad \text{decide}(v)_1 \\
& \quad \text{init}(v)_2 \quad \text{decide}(v)_2
\end{align*}
Composition

- Composing multiple Automata \(\{A_i, i \in I\} \), requires compatibility conditions
- for all \(i, j \in I, i \neq j \)
 - Internal actions are not shared
 - \(\text{int}(A_i) \cap \text{acts}(A_j) = \emptyset \)
 - Only one automaton controls each output
 - \(\text{out}(A_i) \cap \text{out}(A_j) = \emptyset \)
- However one output may be the input of many others
Composing Compatible Automata

- Composing Automata $A = \prod\{A_i, i \in I\}$
- Output actions of the components become output actions of the composition
- Internal actions of the components become internal actions of the composition
- Actions that are inputs to some components but outputs of none become input actions of the composition
Composing Compatible Automata

- Composing Automata $A = \prod\{A_i, \ i \in I\}$

- Output actions of the components become output actions of the composition
 - $\text{out}(A) = \bigcup\{\text{out}(A_i), \ i \in I\}$

- Internal actions of the components become internal actions of the composition
 - $\text{int}(A) = \bigcup\{\text{int}(A_i), \ i \in I\}$

- Actions that are inputs to some components but outputs of none become input actions of the composition
 - $\text{in}(A) = \bigcup\{\text{in}(A_i), \ i \in I\} - \text{out}(A)$
Composing Compatible Automata

- Composing Automata $A = \prod \{A_i, \ i \in I\}$
- The states and start states of the composition are vectors of component states and start states, respectively, of the component automata

\[
\text{state}(A) = \prod \{\text{state}(A_i), \ i \in I\}
\]

\[
\text{start}(A) = \prod \{\text{start}(A_i), \ i \in I\}
\]

- The task partition of the composition's locally controlled actions is formed by taking the union of the components' task partitions

\[
\text{tasks}(A) = \bigcup \{\text{tasks}(A_i), \ i \in I\}
\]
Composition of channels and processes

init(v)₁, decide(v)₁

Process

P₁

send(m)₁,₂

channel

C₁,₂

deliver(m)₁,₂

Process

P₂

deliver(m)₂,₁

send(m)₂,₁

init(v)₂, decide(v)₂

input: init(v)₁, init(v)₂

output: decide(v)₁, decide(v)₂, defend(m)₁, send(m)₁, send(m)₂, deliver(m)₂,₁, deliver(m)₁,₂

tasks all as before S. Haridi, KTHx ID2203x
Transitions of Composed Automata

- Composing Automata $A = \prod\{A_i, i \in I\}$
- In a transition step, all the component automata that have a particular action a participate simultaneously in a
- Other component automata do nothing
- If a is output of automaton A_1 and a in input of A_2 and A_3, but not $\text{sig}(A_4)$,
- A_1, A_2 and A_3 take part and change their state
- $(s_1, s_2, s_3, s_4) a (s'_1, s'_2, s'_3, s_4)$
Composing Automata $A = \prod\{A_i, i \in I\}$

trans(A) is the set of triples (s, a, s') such that, the elements s'_i of vector s' is formed as follows:

- for all $i \in I$ if $a \in \text{acts}(A_i)$, then $(s_i, a, s'_i) \in \text{trans}(A_i)$
- otherwise $s_i = s'_i$

The component states that change are those participating in the action a
Transitions of Composed Automata

- Composing Automata $A = \prod \{ A_i, i \in I \}$
- Assume $(s, a, s') \in \text{trans}(A)$
 - if $a \in \text{int}(A)$ or $a \in \text{in}(A)$ then only one state component is changed in s to s'
 - if $a \in \text{out}(A)$ then multiple state components may change in s', those A_i's that participate in a
Hiding

- Turn output actions into internal actions
- Prevents outputs of composed automaton of further interaction with other automata under further composition
- Makes those output no longer included in traces
- S is a signature, $\Sigma \subseteq \text{out}(S)$, $\text{hide}_\Sigma (S)$ is S' where
 - $\text{in}(S') = \text{in}(S)$, $\text{out}(S') = \text{out}(S) - \Sigma$, $\text{int}(S') = \text{int}(S) \cup \Sigma$
- $\text{hide}_\Sigma (A)$ is an automaton A' whose signature is $\text{hide}_\Sigma (\text{sig}(A))$
Input/output Automata

Example Composition
Distributed System Example

- In general, let $I = \{1, \ldots, n\}$
 - n process automata P_i, $i \in I$,
 - n^2 channel automata $C_{i,j}$, i and $j \in I$
- The composition automaton represents a distributed system where processes communicate through reliable FIFO channels
- The system state
 - state for each process (each a vector of values, one per process)
 - a state for each channel (each a queue of messages in transit)
Composition of channels and processes

init(v)_1 decide(v)_1

\[P_1 \]

send(m)_1,2

channel \[C_{1,2} \]

deliver(m)_1,2

\[P_2 \]

init(v)_2 decide(v)_2

deliver(m)_2,1

send(m)_2,1

channel \[C_{2,1} \]

S. Haridi, KTHx ID2203x
Distributed System Example

- Transitions involve the following actions:
 - $\text{init}(v)_i$: input action, deposits a value in P_i's $\text{val}(i)$ variable
 - $\text{send}(v)_{i,j}$: output action, P_i's value $\text{val}(i)$ gets put into channel $C_{i,j}$
 - $\text{deliver}(v)_{i,j}$: output action, the first message in $C_{i,j}$ is removed and simultaneously placed into P_j's variable $\text{val}(i)$
 - $\text{decide}(v)_i$ output action at P_i, announce current computed value

- The execution of these actions (event) defines what happens in this system
Distributed System Traces

- Sample trace, for \(n = 2 \), where the value set \(V \) is the set of natural numbers \(N \) (non-negative integers) and \(f \) is addition:

 - \(\text{init}(2)_1, \text{init}(1)_2, \text{send}(2)_{1,2}, \text{deliver}(2)_{1,2}, \text{send}(1)_{2,1}, \text{deliver}(1)_{2,1}, \text{init}(4)_1, \text{init}(0)_2, \text{decide}(5)_1, \text{decide}(2)_2 \)

- unique system state that is reachable using this trace
 - P1 has \text{val} vector \((4, 1)\) and P2 has \text{val} vector \((2, 0)\),
init(2),
init(1),
send(2),
deliver(2),
send(1),
deliver(1),
init(4),
init(0),
decide(5),
decide(2)
Input/output Automata

Basic Results of Automata
Composition
Composition versus Components

- Execution or trace of a composition can be projected to yield executions or traces of the component automata.
- Executions of component automata can be pasted together to form an execution of the composition.
- Traces of component automata can be pasted together to form a trace of the composition.
Similarity of executions

- The projection of component A_i in execution of E of a composed automata A, denoted $E|A_i$, is
 - the subsequence of execution E restricted to events (actions) and state of A_i
- Two executions E and F are similar w.r.t A_i if
 - $E|A_i = F|A_i$
- Two executions E and F are similar if
 - E and F are similar w.r.t every component automaton A_i
Similarity of traces

- The projection of component A_i in the trace of E of composed automata A, denoted $\text{trace}(E)|A_i$, is
 - the subsequence of $\text{trace}(E)$ restricted to events of A_i
- Two traces $\text{trace}(E)$ and $\text{trace}(F)$ are similar w.r.t A_i if
 - $E|A_i = F|A_i$
- Two traces $\text{trace}(E)$ and $\text{trace}(F)$ are similar if
 - $\text{trace}(E)$ and $\text{trace}(F)$ are similar w.r.t every node
Projection (process view)

- Given an execution E of $A = \prod \{A_i, i \in I\}$
 - $E = s_0, a_1, s_2, \ldots$
- Projection for E on A_i, $E \mid A_i$
 - Involves deleting actions that don’t belong to A_i, and the following states, and then projecting the remaining states on the A_i component
- Projection for sequence of actions β on A_i, $\beta \mid A_i$
 - Involves deleting actions that don’t belong to A_i,
Distributed System Traces

- Sample trace, for n = 2, where the value set V is the set natural numbers N (non-negative integers) and f is addition:

 - init(2)_1, init(1)_2, send(2)_1,2, deliver(2)_1,2, send(1)_2,1, deliver(1)_2,1, init(4)_1, init(0)_2, decide(5)_1, decide(2)_2

- unique system state that is reachable using this trace
 - P1 has \textit{val} vector (4, 1) and P2 has \textit{val} vector (2, 0),
Projection of Trace on P1

- Sample trace, for \(n = 2 \), where the value set \(V \) is the set natural numbers \(\mathbb{N} \) (non-negative integers) and \(f \) is addition:
 - init(2)_1, init(1)_2, send(2)_1,2, deliver(2)_1,2, send(1)_2,1, deliver(1)_2,1, init(4)_1, init(0)_2, decide(5)_1, decide(2)_2
 - init(2)_1, send(2)_1,2, deliver(1)_2,1, init(4)_1, decide(5)_1

- unique system state that is reachable using this trace
 - P1 has val vector (4, 1) and P2 has val vector (2, 0),
Composition versus Components

- Execution or trace of a composition projects to yield executions or traces of the component automata.

Theorem Projection

- Let $A = \prod\{A_i, i \in I\}$ where A_i are compatible
 - If $E \in \text{execs}(A)$, then $E \mid A_i \in \text{execs}(A_i)$ for all A_i
 - If $\beta \in \text{traces}(A)$, then $\beta \mid A_i \in \text{traces}(A_i)$ for all A_i
Composition versus Components

- Executions of component automata can be pasted together to form an execution of the composition.
- Suppose E_i is an execution of A_i, β a sequence of external actions of A.
- If $\beta \upharpoonright A_i$ is a trace of A_i, for all A_i, then there is an execution E of A, such that β is the trace(E) and $E_i = E \upharpoonright A_i$ for all A_i.
Composition versus Components

- Traces of component automata can be *pasted together* to form a trace of the composition

- Suppose β a sequence of external actions of A
 - If $\beta \upharpoonright A_i$ is a trace of A_i, for all A_i, then β is a trace of A
Input/output Automata

Fairness
Tasks and Fairness

- **Task T**
 - set of of locally controlled actions
 - corresponds to a “thread of control” used to define “fair” executions

- **Fairness means**
 - A task that is continuously enabled gets to make a transition step
 - Needed to prove progress properties (liveness) of systems
Formally, execution (or fragment) E of A is fair to task T if one of the following holds:

- E is finite and T is not enabled in the final state of E.
- E is infinite and contains infinitely many events in T.
- E is infinite and contains infinitely many states in which T is not enabled.

Execution of A is fair if it is fair to all tasks of A.

- $\text{fairexecs}(A)$ is the set of fair executions of A.

Trace of A is fair if it is the trace of a fair execution of A.

- $\text{fairtraces}(A)$ is the set of fair executions of A.
Fair Executions: Channel Automaton

Let $M = \{1,2\}$

Three possible executions and traces

1. $[\lambda], \text{send}(1)_{i,j}, [1], \text{deliver}(1)_{i,j}, [\lambda], \text{send}(2)_{i,j}, [2], \text{deliver}(2)_{i,j}, [\lambda]$

2. $\text{send}(1)_{i,j}, \text{deliver}(1)_{i,j}, \text{send}(2)_{i,j}, \text{deliver}(2)_{i,j}$

3. $[\lambda], \text{send}(1)_{i,j}, [1], \text{deliver}(1)_{i,j}, [\lambda], \text{send}(2)_{i,j}, [2]$

4. $\text{send}(1)_{i,j}, \text{deliver}(1)_{i,j}, \text{send}(2)_{i,j}$

5. $[\lambda], \text{send}(1)_{i,j}, [1], \text{send}(1)_{i,j}, [11], \text{send}(1)_{i,j}, [111], \ldots$

6. $\text{send}(1)_{i,j}, \text{send}(1)_{i,j}, \text{send}(1)_{i,j}, \ldots$
Distributed systems examples

- Consider the fair executions of distributed system example (n processes and n^2 channels)
 - In every fair execution, every message that is sent is eventually delivered
 - In every fair execution containing at least one \textit{init(v)}_i event for each P_i, each process sends infinitely many messages to each other process
 - In every fair execution each process performs infinitely many \texttt{decide} steps
Composition versus Components

- **Fair** execution or trace of a composition projects to yield fair executions or traces of the component automata
- **Theorem Projection**
- Let $A = \prod\{A_i, i \in I\}$ where A_i are compatible
 - If $E \in \text{fairoexecs}(A)$, then $E \mid A_i \in \text{fairoexecs}(A_i)$ for all A_i
 - If $\beta \in \text{fairtraces}(A)$, then $\beta \mid A_i \in \text{fairtraces}(A_i)$ for all A_i
Composition versus Components

- **Fair** Executions of component automata can be pasted together to form a fair execution of the composition.
- Suppose E_i is an fair execution of A_i, β a sequence of external actions of A.
- If $\beta \mid A_i$ is a fair trace of A_i, for all A_i, then there is an fair execution E of A, such that β is the $\text{fairtrace}(E)$ and $E_i = E \mid A_i$ for all A_i.
Composition versus Components

- Fair traces of component automata can be pasted together to form a fair trace of the composition.

- Suppose β a sequence of external actions of A

- If $\beta \mid A_i$ is a fair trace of A_i, for all A_i, then β is a fair trace of A.

S. Haridi, KTHx ID2203x

70
Input Output Automata

Trace Properties
Trace Properties

- Properties of input-output automata are formulated as properties of their **fair traces**
- A trace property P
 - $\text{sig}(P)$ signature containing no internal actions
 - $\text{traces}(P)$ a set of sequences of actions in $\text{sig}(P)$
Automaton A satisfied P

- Every external behavior that can be produced by A is permitted by property P

- A satisfies a trace property P can mean either
 - \(\text{extsig}(A) = \text{sig}(P) \) and \(\text{traces}(A) \subseteq \text{traces}(P) \), or
 - \(\text{extsig}(A) = \text{sig}(P) \) and \(\text{fairtraces}(A) \subseteq \text{traces}(P) \)
Example

- Automata A and trace property P has
 - $\{0\}$ as input set
 - $\{0,1,2\}$ as output set
- $\text{traces}(P)$
 - is the set of all sequences of $\{0,1,2\}$ that include at least one 1
- A has a task that always output 1
- $\text{fairtraces}(A) \subseteq \text{traces}(P)$
- $\text{traces}(A) \not\subseteq \text{traces}(P)$
 - Empty sequence is in $\text{traces}(A)$
Safety properties

- A safety property P states that some particular "bad" thing never happens in any trace.
- A trace property P is a safety property if
 - traces(P) is nonempty
 - if $\beta \in$ traces(P) then every finite prefix of β is in traces(P)
 - if nothing bad happens in β then nothing bad happens in a prefix of β
 - if β_1, β_2, \ldots is an infinite sequence of finite traces in traces(P) where each β_i is a prefix of β_{i+1} then the limit β is also in traces(P)
 - if something bad happens in (infinite) β then a bad event happens in a finite prefix
Example

- A trace property P has
 - $\text{init}(v): v \in V$ as input set
 - $\text{decide}(v): v \in V$ as output set
- $\text{traces}(P)$
 - is the set of all sequences of $\text{init}(v)$ and $\text{decide}(v)$ where no $\text{decide}(v)$ occurs without a preceding $\text{init}(v)$
Liveness properties

- Informally a liveness property is saying that some particular "good" thing eventually happens.
- A trace property P is a liveness property if
 - every finite sequence over $\text{sig}(P)$ has some extension that is in $\text{traces}(P)$.
Example

- A trace property P has
 - $\text{init}(v): v \in V$ as input set
 - $\text{decide}(v): v \in V$ as output set
- $\text{traces}(P)$
 - is the set of all sequences of $\text{init}(v)$ and $\text{decide}(v)$ where for every $\text{init}(v)$ event in a sequence there is a $\text{decide}(v)$ event later in the sequence
Relating safety and liveness

● Two important results

● Theorems
 ● If \(P \) is both a safety property and a liveness property, then \(P \) is the set of all sequences of actions in \(\text{sig}(P) \)

 ● If \(P \) is an arbitrary trace property with \(\text{traces}(P) \neq \emptyset \), then there exist a safety property \(S \) and a liveness property \(L \) such that
 • \(\text{traces}(P) = \text{traces}(S) \cap \text{traces}(L) \)