
Chapter 11

Manipulating Spin

11.1 Larmor Precession

Turning on a magnetic field �B, the qubit state rotates. There are two steps to understanding this
process, essentially the same steps we make to understand any quantum process:

1. Find Ĥ

2. Solve Schrödinger equation

For the second step, we first solve the “time-independent” Schrödinger equation; that is, we find
energy eigenstates

Ĥ |ψn� = En |ψn� .

The “time-dependent” Schrödinger equation

i� d

dt
|ψ(t)� = Ĥ |ψ(t)�

has solution

|ψ(t)� = e−i
Ĥ

� t
|ψ(t = 0)� .

Expanding |ψ(t = 0)� =
�

n
cn |ψn�, we get

|ψ(t)� =
�

n

cne
−iEnt/� |ψn� .

(This assumes that Ĥ is time-independent. If the Hamiltonian is itself a function of t, Ĥ = Ĥ(t),
then we must directly solve the time-dependent Schrödinger equation.)

Find Ĥ

Assume there is only potential energy, not kinetic energy. Classically, E = −�µ · �B. Quantumly,

the magnetic moment is in fact a vector operator, �̂µ = gq

2m
�̂S = −

e

m
�̂S. Hence we set the quantum

Hamiltonian to be
Ĥ = e

m
�̂S · �B .
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We may choose our coordinate system so �B = Bẑ; then

Ĥ = eB

m
Ŝz .

Solve Schrödinger Equation

Following the recipe we gave above, we start by finding the eigendecomposition of Ĥ. The eigen-
states of Ĥ are just those of Ŝz: |0� (up) and |1� (down). The corresponding eigenenergies are
E0 =

eB

2m�, E1 = −
eB

2m�.

Next we solve the time-dependent Schrödinger equation. Write

|ψ(t = 0)� = α |0�+ β |1� .

Then

|ψ(t)� = αe−i
eB

2mt
|0�+ βei

eB

2mt
|1�

∝ α |0�+ βei
eB

m
t
|1� ,

where the proportionality is up to a global phase. On the Bloch sphere,

|ψ(t = 0)� = cos θ

2 |0�+ sin θ

2e
iϕ
|1�

evolves to

|ψ(t)� = cos θ

2 |0�+ sin θ

2e
i(ϕ+

eB

m
t)
|1� .

Thus the state rotates counterclockwise around the z axis, at frequency ω0 ≡
eB

m
(ω0 is known as

the cyclotron frequency, since it is the same frequency with which a classical e− cycles in a magnetic
field, due to the Lorentz force).

Therefore R̂z(∆ϕ) = e−i
Ŝz

� ∆ϕ is a unitary operation which rotates by ∆ϕ about the z axis. (Proof:

R̂z(∆ϕ) is exactly e−i
Ĥ

� t for t = ∆ϕ/ω0.) Being unitary means R̂z(∆ϕ)† = R̂z(∆ϕ)−1 = R̂z(−∆ϕ).

Aligning �B with the z axis rotates the spin about the z axis. Each state is restricted to the line of
latitude it starts on, as illustrated above. For a more general rotation about a different axis, simply
point the �B field in a different direction. For example, the unitary operator

R̂n(∆γ) = e−i
�̂S·n̂
� ∆γ

rotates by ∆γ about the axis n̂. To achieve this unitary transformation, set �B = Bn̂ for exactly
time t = ∆γ/ω0.

Any unitary transformation on a single qubit, up to a global phase, is a rotation on the Bloch sphere
about some axis; mathematically, this is the well-known isomorphism SU(2)/±1 ∼= SO(3) between
2× 2 unitary matrices up to phase and 3× 3 real rotation matrices. Hence Larmor precession, or
spin rotation, allows us to achieve any single qubit unitary gate. While theoretically simple, Larmor
precession can unfortunately be inconvenient in real life, mostly because of the high frequencies
involved and the susceptibility to noise. A more practical method for achieving rotations on the
Bloch sphere is spin resonance, which we will describe next.
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11.2 Spin Resonance

How do we control qubit states in the lab? If |psi(t)� = α(t) |0�+ β(t) |1�, how do we deterministi-
cally change α and β?

We know that the Hamiltonian evolves things in time, so if we turn on a field then the Hamiltonian

will evolve the state via e−iĤt/�.

For a static magnetic field this allows us to rotate qubit state from one point on the Bloch sphere
to another via rotations:

R̂i(∆θ) = e−iŜi∆θ/�,∆θ =
eBo

m
∆t, �B = Box̂i

Question: How can we maintain energy level splitting between |0� and |1� and control the rate at
which a qubit rotates between states? (i.e. change it at a rate different from ωo =

eBo

m
.)

Answer: Spin Resonance gives us a new level of control (most clearly seen in NMR).

How it works: Turn on a big DC field Bo and a little AC field �B sin( ωo t) that is tuned to the
resonance ωo =

eBo

m
:

The small AC field induces controlled mixing between |0� and |1�... “SPIN FLIPS”.

We must solve the Schrodinger equation to understand what is going on:

i� ∂

∂t
|ψ(t)� = Ĥ |ψ(t)�

It is convenient to use column vector notation:

|psi(t)� = α(t) |0�+ β(t) |1� =

�
α(t)
β(t)

�

What’s the Hamiltonian? Ĥ = −�µ · �B = e

m
�S · �B

We now let the magnetic field be composed of the large bias field and a small oscillating transverse
field:

�B = Boẑ +B1cosωotx̂

With this we obtain the Hamiltonian:

Ĥ =
e

m
BoŜz +

e

m
B1cosωotŜx

Now use 2×2 matrix formulation, where the Pauli matrices (Ŝz =
�
2σz, etc.) are of course eminently

useful:
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Ĥ =
e

m
Bo ·

�
2

�
1 0
0 −1

�
+

e

m
B1cosωot ·

�
2

�
0 1
1 0

�

The two terms sum to give the following 2× 2 Hamiltonian matrix (expressed in the Ŝz basis):

Ĥ =
e�
2m

�
Bo B1cosωot

B1cosωot −Bo

�

Now we can plug this Hamiltonian into the Schr. equation and solve for |psi�.

A bit of intuition on QM: If you construct a Hamiltonian matrix out of some basis, then the matrix
element Hij tells us how much application of the Hamiltonian tends to send a particle from state

|j� to state |i�. (The units are of course energy ⇒ rate of transitions ∝ frequency ∝
E

� ∝
Hij

� .)

So, if we only had �B = Boẑ and �B1 = 0, then what would the rate of spin flip transitions be?

ratei←j ∝ �i| Ĥ |j� = |1� Ĥ |0� = H21 = 0!

So, we can conclude that we NEED to have a field perpendicular to the large bias field �B = Boẑ
to induce “spin flips” or to mix up |0� and |1� states in |ψ�. This is perhaps more obvious in case
of spin, but not as obvious for other systems. It is important to develop our quantum mechanical
intuition which can easily get lost in the math!

Now let’s solve the Schr. equation for Spin Resonance.

Ĥ |ψ(t)� = i� ∂

∂t

�
α(t)
β(t)

�
=

e�
2m

�
Bo B1cosωot

B1cosωot −Bo

��
α(t)
β(t)

�

We get two coupled differential equations. First, we define ωo =
eBo

m
and ω1 =

eB1
2m , where the latter

quantity is defined with a seemingly annoying factor of 1/2. It’ll make sense later, though.

i
∂α(t)

∂t
=

ωo

2
α(t) + ω1cos(ωot)β(t)

i
∂β(t)

∂t
= ω1cos(ωot)α(t)−

ωo

2
β(t)

To solve we make a substitution. This may seem weird, but it involves the recognition that the
system has a natural rotating frame in which the system should be viewed.

a(t) = α(t)eiωt/2

b(t) = α(t)e−iωt/2
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Now we’re going to use a dubious approximation, but it involves a recognition that ωo is much larger
than ω1 and these fast rotations average to zero on the timescales 1/ω1 (which are the relevant
experimental timescales). Anyway, here’s the dubious approximation:

cos(ωot)e
iωot ≈

1

2

Using these definitions and dubious approximations and we obtain the following differential equation
for a(t) (and correspondingly b(t)):

∂2a(t)

∂t2
+

ω2
1

4
a(t) = 0

This is a familiar second order differential equation. Our initial conditions have yet to be specified,
but let’s say α(0) = β(0) = 0. This gives the following solution:

�
α(t)
β(t)

�
=

�
e−i

ωo

2 tcosω1
2 t

−e+i
ωo

2 tsinω1
2 t

�

What does this mean geometrically? Let’s go to the Bloch sphere! Our generalized Bloch vector
looks like:

|ψ� = cos
θ

2
|0�+ eiφsin

θ

2
|1�

Our time-dependent state which is a solution to the Schr. equation looks like:

|ψ(t)� = cos
ω1t

2
|0�+ ei(ωo+π)sin

ω1t

2
|1�

Geometrically we can say that φ = ωot+ π, so we conclude that the qubit is spinning around ẑ at
a rate ωo.

What about θ? θ = ω1t, so we’re crawling up the sphere at a rate ω1 = eB1
m

at the same time
we’re spinning rapidly about ẑ at the fast ωo, the Larmor frequency. We can control ω1 precisely
by changing the amplitude of B1.

Even though ω0 is very large, ω1 can be very small. If we’re really good, we can flip spins by
applying a “π-pulse”: ω1∆t = π.

Note: As spins flip out of ground state they suck energy out of the “RF field” (B1cosωo). This is
easily detected and forms the basis of NMR.


