Introduction to Trigonometry with Applications

APPLICATION EXAMPLE: ANALYSIS FOR ERROR IN POSITIONING OF TIP OF ONE-LINK ROBOT

PANOS S. SHIAKOLAS DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING COLLEGE OF ENGINEERING UNIVERSITY OF TEXAS AT ARLINGTON

Application Example A: Analysis for Error in Positioning of Tip of One-Link Robot

 $X_e = L \cos(\theta)$ Yo = L sin(0) O->CRAR AD: O±10 Xp=L cos(O±AO) $\frac{1}{x}$ $Y_{\rho} = L sin(\theta \pm \Delta \theta)$

Application Example B: Analysis for Error in Positioning of Tip of One-Link Robot

 $X_{e}(+\Delta \theta) = (\cos(\theta + \Delta \theta))$ $X_{e}(-\Delta \theta) = (\cos(\theta - \Delta \theta))$ $Y_{e}(+\Delta \Theta) = Lsin(\Theta + \Delta \Theta)$ e Ye (-DO) = L sin (0-DO) 1:50 cm 40: 0.5 degree $0=45^{\circ}$ 0+00 ; Xp(-00) 0-00 X (10)

Application Example C: Analysis for Error in Positioning of Tip of One-Link Robot $\rightarrow \pm \Delta L$; $\Theta \rightarrow \pm \Delta \Theta$ $X_{\rho} = (L \pm \Delta L) \cos(\Theta \pm \Delta \Theta)$ P3 $Y_e = (L \pm \Delta L) sin (\theta \pm \Delta \theta)$ L: 50 mm; AL: 1mm O: 450; AO=0.5° **r**2 P, 2P2 × P, 2P4 ; P2 1P3