
How to approach Booleans and logic expressions with Diagrams!

To predict to which Boolean value an expression evaluates to (either True or False), you can break down the process by
evaluating the smaller expressions that make the larger one. Let's solve the example in the diagrams below.

First: we will use Truth tables, so let's learn a little bit about them...

The Boolean value (True of False) of an expression that uses logic operators (and, or, not) is determined by Truth tables. They
determine which Boolean value corresponds to logic operations that use and, or, not.

Below are the truth tables for the operators and (Logical conjunction), or (Logical Disjunction) and not (Logical negation) .
These tables determine which Boolean will result from more complex expressions that use logic operators.

For example, two expressions (p and q, which are generic names for expressions in logic) joined by "and" will evaluate to True
only if they are both True. Otherwise, they will evaluate to False (we will see an example of this in the diagrams below)

These are the Truth Tables we will need:

=> With the and operator, if both expressions are True, joining them with the and operator will evaluate to True. If one or both of
them are False, it will evaluate to False.

=> With the or operator, if either one of the expressions is True, it will evaluate to True, otherwise, if they are both False, it will
evaluate to False.

=> With the not operator, the expression will evaluate to the opposite Boolean that's next to the operator not. (not True evaluate
to False) and (not False evaluates to True)

https://en.wikipedia.org/wiki/Truth_table

Source: Wikipedia Truth table

EXAMPLE:

 FIRST STEP: In this example, we first start analyzing the expressions inside the innermost parentheses. This
expression can be broken down into three smaller evaluations. First we analyze 5 > 6, 100 < 3 which are both False.
Then, we analyze their conjunction (which Boolean is returned when two False statements are joined by "and"). In this
case, it's False. So the expression in the innermost parentheses will evaluate to False, and in the next steps, we will
stop thinking of the elements inside these parentheses as an expression and start thinking of it as the
Boolean False for subsequent evaluations.

 SECOND STEP:: Now we analyze the expression inside the next parentheses. This is comprised of two evaluations.
First, 7<2 which is False. Second, False or False . According to our truth table, two False statements joined by the
"or" operator will evaluate to False.

 THIRD STEP: Now we analyze the third parentheses, and there is only one evaluation to make, logical negation. The
operator "not" followed by a Boolean evaluates to the opposite Boolean. If an expression is True, not followed by that
expression will evaluate to False, and if it's False, it will evaluate to True.

So, in this case, we have a not followed by an expression that we determined evaluates to False. This turns into True.

And finally, we have the same case again, not next to an expression that evaluates to True turns it into False, and this is the final
result of evaluating this expression.

https://en.wikipedia.org/wiki/Truth_table

Here you can see this broken down by steps executed in python's shell and finally the whole expression to confirm it evaluates to
False:

Hope it helps! If you have any questions, please ask them on the forums!

Estefania (kiara-elizabeth).

