
Mobile Apps Sample Solution

1 PREFERRED TARGET AUDIENCE

Operations Management Team led by Christopher Giovanni, Chief Operating Officer at Crazy Taxi Cab

Co.

2 PREFERRED SOLUTION

Crazy Taxi Cab Co. liked the idea of a highly scalable, agile solution that they could both execute on and

manage with a small IT team with limited back-end development experience in .NET. The company’s

Microsoft representative introduced them to Azure Mobile Services, a cloud based mobile platform that

provides backend CRUD data services, offline data sync for mobile devices, custom REST API services,

push notifications and services for login via a social identity provider. This was exactly the “back-end in a

box” that they were looking for.

Crazy Taxi Cab Co. leveraged the many features of Mobile Services available to them with the Standard

tier in order to minimize their backend development burden and accelerate solution delivery.

The implementation of the proposed Azure Mobile Services solution would create a strategic

partnership that will help Crazy Taxi Cab Co. to overcome its challenges with:

 Minimizing system downtime

 Sending multiple user specific notifications to mobile devices

 Managing user accounts leveraging social identity providers, such as Microsoft Account,

Facebook, and Twitter

 24/7 (secure) data accessibility throughout the Crazy Taxi Cab Co. network

 Scalability in software solutions in an agile marketplace

As the FastRide system continues to be improved upon, Mobile Services will help to inject velocity into

the development cycle by providing a mobile back end to the application. Mobile Services offers cross

platform compatible components, which gives Crazy Taxi Cab Co. the flexibility to change their mobile

platform as the needs of their business dictate. This “back-end as a service” approach will allow Crazy

Taxi to focus on building an app that merges the right functionality with a great user experience for each

market the operate in.

By utilizing push notifications, Crazy Taxi Cab Co. can optimize their customer pickup messages through

the FastRide app. This allows for faster, and more streamlined in-app communication. When a new

fare’s pickup address is entered into FastRide by a dispatcher, or the customer facing mobile app,

Mobile Services will enable FastRide to automatically send a notification to the closest available driver—

eliminating the need for manual notifications. Since push notifications can be managed, each base will

have control over the messages sent to its drivers.

To propose a more complete solution and ensure deployment success, it would be helpful to know:

 Type and operating system of tablets being used

 Expected product life of current tablet choice

 Current number of dashboard tablets

 Projected number of tablets after the planned expansion this year and next year

 Current average number of fares completed per day, week, month, year

 Projected average number of fares completed per day, week, month, year after the expansion

into new markets

 Rate of growth across bases (customer and driver)

 Other software products used to operate the company

Understanding these details and decisions will help identify the current and future software, hardware,

and infrastructure needs of Crazy Taxi Cab Co., and to provide solutions that are consistent with their

short and long term business goals.

3 HIGH-LEVEL ARCHITECTURE

Crazy Taxi Cab Co. leveraged the many features of Mobile Services available to them with the Standard

tier in order to minimize their backend development burden and accelerate solution delivery.

3.1 AUTHENTICATION
Drivers login to the FastRide app on their device using their Microsoft, Google, Twitter or Facebook

credentials, the federated login process being handled by Mobile Services in conjunction with the

aforementioned identity providers.

3.2 NOTIFICATIONS
Once logged in, the app registers with Mobile Services, associating the driver’s identity with the

Notification Hub (associated with the Mobile Service). In this way, Crazy Taxi dispatch can send

broadcast notifications to all drivers, but still be able to send targeted Fare Alert messages to a

particular driver

By having Mobile Services in place with Push Notifications, Crazy Taxi Cab Co. is well positioned in the

future to light up the ability to deliver a customer-oriented app that deliver push notifications to

customers informing them of events relevant to their pickup.

3.3 OFFLINE DATA
For the driver’s iOS and Android devices, in the construction of the FastRide app, they leveraged the

native client Offline Data Sync functionality for synchronizing Fare Data when temporarily disconnected

from the cellular network. This Fare Data is stored using Tables in Mobile Services, which ultimately

rests as relational tables in a SQL Database. This SQL Database also stores the driver profiles (that

associate social credentials with driver profile information).

3.4 BACK END CUSTOM SERVICES
When a driver accepts or declines a fare received via a push notification, that message is sent using a

Custom REST API hosted by Mobile Services and built using ASP.NET Web API.

3.5 FRONT-END WEBSITE
Dispatch uses a website hosted in Azure Websites to manage the taxi cab dispatch process. The

Notification Hub is configured so that only the dispatch website is allowed to send push notifications to

the drivers (the FastRide app for drivers is Listen only).

3.6 MONITORING
Crazy Taxi corporate IT monitors the health of the solution using the Dashboard for the Mobile Service

or Website in the Azure Portal. To assist the IT team with visibility into the health of the system, they

should configure monitoring endpoints, again using the Azure Portal, on their website and mobile

services and enable e-mail alerts should the Response Time and Uptime metrics for those fall below

values they deem acceptable.

3.7 SCALING CONFIGURATION
They have configured Autoscale on their Mobile Service, via the Scale tab in the portal, to double the

number of instances it uses on Friday and Saturday night in order to handle the increased load, then

return back to their normal instance count for the rest of the week.

3.8 BACKEND JOBS
They have also created a Mobile Services Scheduled Job that processes the Fare Data on nightly basis to

generate the data sets that power the Fare Reports. This data is stored in the same SQL Database that

stores all the other data used by the solution.

4 PREFERRED SOLUTION DIAGRAM

5 CHECKLIST OF PREFERRED OBJECTION HANDLED

5.1 GENERAL
Doesn’t Azure Mobile Services only work on Windows devices?

 Azure Mobile Services provides native clients for iOS, Android, Xamarin, PhoneGap, Sencha

and Appcelerator in addition to Windows universal C#, Windows universal JavaScript and

Windows Phone. In addition, Azure platform services offer REST APIs that extend the reach

to platforms for which there is not a native API, but are capable of making REST style

requests.

Our development team doesn’t know node.js. We had heard mention of Mobile Services, but

thought it only supported JavaScript backends.

 Mobiles Services supports using .NET for the backend logic, and node.js (or JavaScript logic)

does not have to be used anywhere in the backend code.

Our development team seems to think implementing push notifications using Apple and Android

apps directly is easy, but we (as the executives) aren’t so sure. How difficult can it be?

 While using the Push Notification System of a particular device platform directly is typically

made fairly simple by the provider of that platform (e.g., iOS apps have a straightforward

API for leveraging Apple’s Push Notification System), this simplicity is only true for the

individual device and does not address the complete solution that requires at minimum a

backend managing device registrations at scale and sending push notifications cross

platforms in a timely fashion. Azure Mobile Services provides that backend functionality,

which can be easily scaled to meet demand.

Can’t we just build all of our backend using Azure Websites?

 Azure Websites is effectively a superset of Mobile Services and so can be used to implement

the backend for Mobile Applications. However, Websites do not deliver the services tailored

for the mobile application scenario, requiring the developers to write their own logic to

integrate with Notification Hubs, SQL Database, Identity services and WebJobs. Additionally,

Mobile Services is prescriptive in the patterns used for developing custom API’s, and so

speeds the development of such API’s by allowing the development efforts to focus on the

business logic instead of dealing with structural and hosting decisions. These become

important factors to consider when taking into account the development team size,

capabilities and timeframe.

6 PROOF OF CONCEPT CHECKLIST

The primary items a Proof of Concept for this solution could demonstrate include:

 Scalability / Scheduled Autoscale

 Mobile Services ease of integration (e.g., the backend in a box)

 Streamlined communication with Push notifications

 Integration of social identity platforms to aid in customer authentication and profile

management

 Device offline data storage & synchronization

 Monitoring solution health

The Proof of Concept will be considered successful if the Crazy Taxi Operations Management Team

believes they can realize value in:

 Speeding up the delivery of the overall solution

 Push notifications to streamline communication and send fare updates to tablet devices

 Authenticating users via social media platforms and future benefits of successfully leveraging

social media integration.

 Minimizing system downtime by keeping app data in the cloud

 Scalability in a mobile cloud solution

The personnel resources you would leverage to build the PoC, may include:

 Partner Resources in the Region or MCS to help assist with migration design and

implementation

 Microsoft Azure CAT for level 300 expertise requests with Azure

