Data Structures and Algorithms (12)

Instructor: Ming Zhang
Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/
Chapter 12 Advanced data structure

• 12.1 Multidimensional Array
• 12.2 Generalized Lists
• 12.3 Storage management
• 12.4 Trie
• 12.5 Improved binary search tree
 – 12.5.1 Balanced binary search tree
 • Concept and inserting operation of AVL tree
 • Deleting operation and efficiency analysis of AVL tree
 – 12.5.2 Splay Tree
12.5 Improved binary search tree

12.5.1 AVL

- The performance of BST operations are affected by the input sequence
 - Best $O(\log n)$; Worst $O(n)$
- Adelson-Velskii and Landis
 - AVL tree, a balanced binary search tree
 - Always $O(\log n)$

![AVL Tree Diagram]
12.5 Improved binary search tree

12.5.1 AVL

- **Single Rotation**

 - Swap the node with its father, while keeping the property of BST
12.5 Improved binary search tree

12.5.1 AVL

- Single Rotation and Double Rotation: Keep the BST property.

![Diagram of AVL tree rotations and balancing]
12.5 Improved binary search tree

12.5.1 AVL

- Equivalent rotation: Keep the BST property
12.5 Improved binary search tree

AVL

- Empty tree is allowed
- The height of AVL tree with n nodes is $O(\log n)$
- If T is an AVL tree
 - Then the left and right subtree of T: T_L, T_R are also AVL trees
 - And $|h_L - h_R| \leq 1$
 - h_L, h_R are the heights of its left and right subtree.
12.5 Improved binary search tree

Examples of AVL tree

\[T_1, T_2, T_3, T_i, T_4 \]
12.5 Improved binary search tree

Balance Factor

• Balance Factor, $bf(x)$:
 - $bf(x) = \text{height}(x_{rchild}) - \text{height}(x_{lchild})$
• Balance Factor might be 0, 1 and -1
Insertion in an AVL tree

- Just like BST: insert the current node as a leaf node
- Situations during adjustment
 - The current node was balanced. Now its left or right subtree becomes heavier.
 - Modify the balance factor of the current node
 - The current node had a balance factor of ± 1. Now the current node becomes balanced.
 - Height stays the same. Do not modify.
 - The current node had a balance factor of ± 1. Now the heavier side becomes heavier
 - Unbalanced
 - “dangerous node”
12.5 Improved binary search tree

Rebalance

Become unbalanced after inserting 17

Adjustment
12.5 Improved binary search tree

- Unbalanced situation occurs after insertion
- Insert the current node as leaf node in BST
- Assume a is the most close node to the current node. And its absolute value of balance factor is not zero.
- The current node s with key is in its left subtree or its right subtree.
- Assume that it is inserted into the right subtree.

The original balance factor:
 - (1) \(bf(a) = -1\)
 - (2) \(bf(a) = 0\)
 - (3) \(bf(a) = +1\)
Assume a is the most close node to the current node s. And its absolute value of balance factor is not zero.

- S is in a’s left subtree or right subtree.

Assume S is in the right subtree. Because balance factors of nodes in paths from s to a change from 0 to +1. So as for node a:

1. $bf(a) = -1$, then $bf(a) = 0$, and the height of node a’s subtree stays the same.

2. $bf(a) = 0$, then $bf(a) = +1$, and the height of node a’s subtree stays the same.

 - Because of the definition of a ($bf(a) \neq 0$), we can know that node a is the root.

3. $bf(a) = +1$, then $bf(a) = +2$, and adjustment is needed.
12.5 Improved binary search tree

Unbalanced Cases

- The balance factors of any nodes must be 0, 1, -1
- a’s left subtree was heavier, \(bf(a) = -1 \), and \(bf(a) \) become -2 after insertion.
 - **LL**: insert into the left subtree of a’s left child.
 - Left heavier + left heavier, \(bf(a) \) become -2
 - **LR**: insert into the right subtree of a’s left child.
 - Left heavier + right heavier, \(bf(a) \) become -2
- Likewise, \(bf(a) = 1 \), and \(bf(a) \) become 2 after insertion
 - **RR**: the node that causes unbalanced is in the right subtree of a’s right child.
 - **RL**: the node that causes unbalanced is in the left subtree of a’s right child.
12.5 Improved binary search tree

Unbalanced Cases

LL

RR
12.5 Improved binary search tree

Summary of unbalanced cases

- LL is symmetry with RR, and LR is symmetry with RL.
- Unbalanced nodes happen on the path from inserted node to the root.
- Its balance factor must be 2 or −2
 - If 2, the balance factor before insertion is 1
 - If −2, the balance factor before insertion is −1
12.5 Improved binary search tree

LL single rotation

Diagram: A binary search tree with nodes labeled a, b, h, and h+1, showing a single rotation operation.
12.5 Improved binary search tree

Insight of Rotations

- Take RR for instance, there are 7 parts
 - Three nodes: a, b, c
 - Four subtrees T_0, T_1, T_2, T_3
 - The structure will not change after making c’s subtree heavier.
 - T_2, c, T_3 could be regarded as b’s right subtree.
- Goal: construct a new AVL structure
 - Balanced
 - Keep the BST property
 - $T_0 \ a \ T_1 \ b \ T_2 \ c \ T_3$
Double Rotation

- RL or LR needs double rotation.
 - They are symmetry with each other
- We discuss about RL only
 - LR is the same.
First step of RL double rotation

Height of a’s subtree is $h+2$ before inserting
Height of a’s subtree is $h+3$ after inserting

Or -1
12.5 Improved binary search tree

Second step of RL double rotation

Balance factor is meaningless in the middle status

Balance factor of a is -1 or 0
Balance factor of b is 0 or 1
Insight of Rotations

• Doing any rotations (RR, RL, LL, LR)
• New tree keeps the BST property
• Few pointers need to be modified during rotations.
• Height of the new subtree is h+2, and heights of subtrees before insertion stay same
• Rest parts upon node a (if not empty) are always balanced
12.5 Improved binary search tree

AVL tree after inserting word: cup, cop, copy, hit, hi, his and hia

Unbalanced after inserting copy
LR double rotation
12.5 Improved binary search tree

AVL tree after inserting word: cup, cop, copy, hit, hi, his and hia
12.5 Improved binary search tree

AVL tree after inserting word: cup, cop, copy, hit, hi, his and hia
12.5 Improved binary search tree

AVL tree after inserting word: cup, cop, copy, hit, hi, his and hia
12.5 Improved binary search tree

AVL tree after inserting word: cup, cop, copy, hit, hi, his and hia

RR single rotation
12.5 Improved binary search tree

AVL tree after inserting word: cup, cop, copy, hit, hi, his and hia
12.5 Improved binary search tree

AVL tree after inserting word: cup, cop, copy, hit, hi, his and hia

LL single rotation
Discussions

• Can we modify the definition of balance factor of AVL tree? For example, allow the height difference as big as 2.

• Insert 1, 2, 3, ..., 2^k-1 into an empty AVL tree consecutively. Try to prove the result is a complete binary tree with height k.
Data Structures and Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)
http://www.jpku.pku.edu.cn/pku/pk/course/sjg/
Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)