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Elgendecomposition

All covarlance matrices have an eigendecomposition

e Cx = UAU' (eigendecomposition)

e U is d x d (column are eigenvectors, sorted by their eigenvalues)
e A isd x d(diagonals are eigenvalues, off-diagonals are zero)

Figenvector / Eigenvalue equation: C,u = Au
e By definition u'u = 1 (unit norm)

_
e Example: ]
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PCA Formulation

PCA: find lower-dimensional representation of raw data
e X iSn xd(raw data)

e Z — XP Isn x k (reduced representation, PCA ‘scores’)
e P isd x k (columns are k principal components)
e \ariance / Covariance constraints




PCA Formulation, k=1

PCA: find one-dimensional representation of raw data
e X iSn xd(raw data)

e z = Xp ISn x 1 (reduced representation, PCA ‘scores’)
e p Isd x 1 (columns are k principal components)
e \arlance constraint
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Goal: Maximizes variance, i.e., max o, where ||p||> = 1
P



Goal: Maximizes variance, i.e., max o, where ||p||> = 1
P

1

02 = 112l
Relationship between Euclidean distance and dot product = %ZTZ
Definition: z = Xp = %(Xp)T(Xp)
Transpose property: (Xp)' = p' X ; associativity of multiply — %pTXTXp
Definition: Cx — ~XTX —p Cxp

n

Restated Goal: maxp' Cxp where ||p|]. =1
P



Connection to Eigenvectors

Recall eigenvector / eigenvalue equation: Cxu = Au

e By definition u'u =1, and thus u' Cxu = 4

e But this Is the expression we're optimizing, and thus maximal
variance achieved when p Is top eigenvector of Cx

Similar arguments can be used for k > 1

Restated Goal: maxp' Cxp where ||p|]. =1
P
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Computing PCA Solution

Given: n x d matrix of uncentered raw data
Goal: Compute k « d dimensional representation

Step 1: Center Data

Step 2: Compute Covariance or Scatter Matrix

]
e —X'X versus X'X
n

Step 3: Eigendecomposition 7

Step 4: Compute PCA Scores




PCA at Scale

Case 1: Big n and Ssmall d

e O(d?) local storage, O(d’) local computation,
O(dk) communication

e Similar strategy as closed-form linear regression

Case 2: Big n and Big d

e O(d) local storage and computation on
workers, O(dk) communication

e Iterative algorithm
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Step 1: Center Data
e Compute d feature means, m &

e Communicate m to all workers
e Subtract m from each data point

pd

Example: n = 6; 3 workers

WOrKers: — x(1)— — x(3)— —x2— | o
— x(5)— () — _x(O— O(nd) Distributed Storage
| | |

O(d) Local Computation

ma p : —Xx(¥) 1941 —X(V) m —x(1) m



Step 2: Compute Scatter Matrix ( X' X))

e Compute matrix product via outer products (just like
we did for closed-form linear regression!)
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Step 2: Compute Scatter Matrix ( X' X))

e Compute matrix product via outer products (just like
we did for closed-form linear regression!)
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Step 2: Compute Scatter Matrix ( X' X))

e Compute matrix product via outer products (just like
we did for closed-form linear regression!)
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X' X =

n d
Z I
n S
=1

Example: n = 6; 3 workers

map: —x(— —x(— == § O(d?) Local Storage
\ | / § O(na?) Distributed Computation
—x(i—

reduce: Z I

O(nd) Distributed Storage

O(d?) Local Storage
O(d?) Local Computation




Step 3: Eigendecomposition
e Perform locally since d i1s small

e Communicate k principal components (P &
to workers

Example: n = 6; 3 workers

workers: — x(1)—
— x(5)—

mapsip BT
) { O(na?) Distributed

O(d?) Local S
O(d°) Local Co

dxk)

O(nd) Distributed Storage

O(d?) Local Storage

Computation

orage

mputation

O(dk) Communication



Step 4: Compute PCA Scores
e Multiply each point by principal components, P

Example: n = 6; 3 workers

WOrKers: -
O(nd) Distributed Storage

map: O(dk) Local Computation
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PCA at Scale

Case 1: Big n and Small d

e O(d?) local storage, O(d’) local computation,
O(dk) communication

e Similar strategy as closed-form linear regression

Case 2: Big n and Big d

e O(d) local storage and computation on
workers, O(dk) communication

e Iterative algorithm




An lterative Approacn

We can use algorithms that rely on a sequence of matrix-
vector products to compute top k eigenvectors (P)

e £.0., Krylov subspace or random projection methods

Krylov subspace methods (used in MLIib) iteratively compute
X " Xv for some v € R? provided by the method

e Requires O(k) passes over data, O(d) local storage on workers
e \Ve don’t need to compute the covariance matrix!




Repeat for O(k) iterations:
—» 1. Communicate v; € R? to all workers

2. Compute q; = X ' Xv; in a distributed fashion
o Step 1: b; = Xv;
e Step2:q; = X ' b;
e Perform In single map-reduce!

L 3. Driver uses q; to update estimate of P

e b, =v, x:each component is dot product

e q; isasum of rescaled data points, i.e., ;= » byx"
=1



Compute q; = X ' Xv; in a distributed fashion
® bl] = V; TxU) and q; = ZleX

e Locally compute each dot oroduct and rescale each point
before summing all rescaled points in reduce step!

Example: n = 6; 3 workers

WOrKEers: — x(1)— — x(3)— -
(5 ) O(nd) Distributed Storage
| |
map: _— - § O(d) Local Storage
| 0 § O(nd) Distributed Computation

| O(d) Local Storage

reduce: q; = Z bii X = O(d) Local Computation
| O(d) Communication




Compute q; = X ' Xv; in a distributed fashion
® bl] = V; TxU) and q; = ZleX

e Locally compute each dot oroduct and rescale each point
before summing all rescaled points in reduce step!

g = trainData.map(rescaleByB1)

.reduce(sumVectors)

WOrKEers: — x(1)— — x(3)— -
(5 ) O(nd) Distributed Storage
| |
map: _— - § O(d) Local Storage
| 0 § O(nd) Distributed Computation

| O(d) Local Storage

reduce: q; = Z bii X = O(d) Local Computation
| O(d) Communication
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Which areas are active at which times??

Which neuronal populations are activated by
different directions of the stimulus”




Given

Collection of neural
time series

Goal

Find representations of
data that reveal how
responses are organized
across space and time

Neural signals

Time
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