PCA Derivation (Optional)

Eigendecomposition

- All covariance matrices have an eigendecomposition • $\mathbf{C}_{\mathbf{X}} = \mathbf{U} \Lambda \mathbf{U}^{\top}$ (eigendecomposition)
- U is $d \times d$ (column are eigenvectors, sorted by their eigenvalues) • Λ is $d \times d$ (diagonals are eigenvalues, off-diagonals are zero)

Eigenvector / Eigenvalue equation: $\mathbf{C}_{\mathbf{x}}\mathbf{u} = \lambda \mathbf{u}$ • By definition $\mathbf{u}^{\top}\mathbf{u} = 1$ (unit norm)

• Example: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \Rightarrow$ eigenvector: $\mathbf{u} = \begin{bmatrix} 1 & 0 \end{bmatrix}^{\top}$ eigenvalue: $\lambda = 1$

PCA Formulation

- PCA: find lower-dimensional representation of raw data
- X is $n \times d$ (raw data)

- $\mathbf{Z} = \mathbf{XP}$ is $n \times k$ (reduced representation, PCA 'scores') • **P** is $d \times k$ (columns are k principal components) • Variance / Covariance constraints

PCA Formulation, k = 1

- PCA: find one-dimensional representation of raw data
- X is $n \times d$ (raw data)
- z = Xp is $n \times 1$ (reduced representation, PCA 'scores') • p is $d \times 1$ (columns are k principal components)
- Variance constraint

$$\sigma_{\mathbf{z}}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(z^{(i)} \right)^{2} = \frac{1}{n} ||\mathbf{z}||_{2}^{2}$$

Goal: Maximizes variance, i.e., max σ_z^2 where $||\mathbf{p}||_2 = 1$

Relationship between Euclidean distance and dot product

Transpose property: $(\mathbf{X}\mathbf{p})^{\top} = \mathbf{p}^{\top}\mathbf{X}^{\top}$; associativity of multiply

Definitio

Goal: Maximizes variance, i.e., max σ_z^2 where $||\mathbf{p}||_2 = 1$

- Definition: $\mathbf{z} = \mathbf{X}\mathbf{p}$

on:
$$\mathbf{C}_{\mathbf{X}} = \frac{1}{n} \mathbf{X}^{\top} \mathbf{X}$$

$$\sigma_{\mathbf{z}}^{2} = \frac{1}{n} ||\mathbf{z}||_{2}^{2}$$
$$= \frac{1}{n} \mathbf{z}^{\top} \mathbf{z}$$
$$= \frac{1}{n} (\mathbf{X} \mathbf{p})^{\top} (\mathbf{X} \mathbf{p})$$
$$= \frac{1}{n} \mathbf{p}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{p}$$
$$= \mathbf{p}^{\top} \mathbf{C}_{\mathbf{X}} \mathbf{p}$$

Restated Goal: max $\mathbf{p} | \mathbf{C}_{\mathbf{x}} \mathbf{p}$ where $||\mathbf{p}||_2 = 1$

Recall eigenvector / eigenvalue equation: $C_x u = \lambda u$

- By definition $\mathbf{u}^\top \mathbf{u} = 1$, and thus $\mathbf{u}^\top \mathbf{C}_{\mathbf{x}} \mathbf{u} = \lambda$
- But this is the expression we're optimizing, and thus maximal variance achieved when \mathbf{p} is top eigenvector of $\mathbf{C}_{\mathbf{X}}$

Similar arguments can be used for k > 1

Restated Goal: max $\mathbf{p} | \mathbf{C}_{\mathbf{x}} \mathbf{p}$ where $||\mathbf{p}||_2 = 1$

Connection to Eigenvectors

Computing PCA Solution

Given: $n \times d$ matrix of uncentered raw data **Goal:** Compute $k \ll d$ dimensional representation

Step 1: Center Data

Step 2: Compute Covariance or Scatter Matrix

• $-\mathbf{X}^{\top}\mathbf{X}$ versus $\mathbf{X}^{\top}\mathbf{X}$ N

Step 3: Eigendecomposition

Step 4: Compute PCA Scores

Case 1: Big *n* and Small *d*

- $O(d^2)$ local storage, $O(d^3)$ local computation, O(dk) communication
- Similar strategy as closed-form linear regression

Case 2: Big *n* and Big *d*

- O(d) local storage and computation on workers, O(dk) communication
- Iterative algorithm

PCA at Scale

Case 1: Big *n* and Small *d* • $O(d^2)$ local storage, $O(d^3)$ local computation, O(dk) communication

Case 2: Big *n* and Big *d*

- O(d) local storage and computation on workers, O(dk) communication
- Iterative algorithm

PCA at Scale

Similar strategy as closed-form linear regression

Step 1: Center Data

Example: n = 6; 3 workers

• Compute *d* feature means, $\mathbf{m} \in \mathbb{R}^d$ • Communicate m to all workers • Subtract m from each data point

O(d) Local Computation

Step 2: Compute Scatter Matrix (**X** | **X**)

we did for closed-form linear regression!)

• Compute matrix product via outer products (just like

Step 2: Compute Scatter Matrix (**X** | **X**)

we did for closed-form linear regression!)

• Compute matrix product via outer products (just like

Step 2: Compute Scatter Matrix (**X** | **X**)

• Compute matrix product via outer products (just like we did for closed-form linear regression!)

 $\begin{bmatrix} 9 & 18 \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 9 & -15 \\ 3 & -5 \end{bmatrix} + \begin{bmatrix} 10 & 15 \\ 4 & 6 \end{bmatrix}$

Example: n = 6; 3 workers

 $- \mathbf{X}^{(2)}$ $\mathbf{X}^{(6)}$. $-\mathbf{X}^{(i)}$ $\mathbf{X}^{(i)}$

O(nd) Distributed Storage

$O(d^2)$ Local Storage $O(nd^2)$ Distributed Computation

 $O(d^2)$ Local Storage $O(d^2)$ Local Computation

Step 3: Eigendecomposition • Perform locally since *d* is small • Communicate k principal components ($\mathbf{P} \in \mathbb{R}^{d \times k}$)

- to workers

Example: n = 6; 3 workers

O(nd) Distributed Storage

$O(d^2)$ Local Storage $O(nd^2)$ Distributed Computation

 $O(d^2)$ Local Storage $O(d^3)$ Local Computation O(dk) Communication

Step 4: Compute PCA Scores Multiply each point by principal components, P

Example: n = 6; 3 workers

O(nd) Distributed Storage

O(dk) Local Computation

Distributed PCA, Part II (Optional)

Case 1: Big *n* and Small *d*

- $O(d^2)$ local storage, $O(d^3)$ local computation, O(*dk*) communication
- Similar strategy as closed-form linear regression

Case 2: Big *n* and Big *d* • O(d) local storage and computation on workers, O(dk) communication

• Iterative algorithm

PCA at Scale

An Iterative Approach

vector products to compute top k eigenvectors (P) • E.g., Krylov subspace or random projection methods

 $\mathbf{X}^{\top}\mathbf{X}\mathbf{v}$ for some $\mathbf{v} \in \mathbb{R}^d$ provided by the method

- Requires O(k) passes over data, O(d) local storage on workers
- We don't need to compute the covariance matrix!

- We can use algorithms that rely on a sequence of matrix-
- Krylov subspace methods (used in MLlib) iteratively compute

3. Driver uses
$$\mathbf{q}_i$$
 to u

•
$$b_{ij} = \mathbf{v}_i^\top \mathbf{x}^{(j)}$$
: each com

- 2. Compute $\mathbf{q}_i = \mathbf{X}^\top \mathbf{X} \mathbf{v}_i$ in a distributed fashion

 - ver uses \mathbf{a}_i to update estimate of \mathbf{P}
 - nponent is dot product
- \mathbf{q}_i is a sum of rescaled data points, i.e., $\mathbf{q}_i = \sum b_{ij} \mathbf{x}^{(j)}$ j=1

reduce:

 $\mathbf{q}_i = \sum b_{ij} \times \mathbf{k}$

O(nd) Distributed Storage

O(*d*) Local Storage O(*nd*) Distributed Computation

O(d) Local Storage O(d) Local Computation O(d) Communication

$$b_{ij}\mathbf{x}^{(j)}$$

- .reduce(sumVectors)

O(nd) Distributed Storage

O(*d*) Local Storage O(*nd*) Distributed Computation

O(d) Local Storage O(d) Local Computation O(d) Communication

Lab Preview

Vladimirov et al., 2014

Which areas are active at which times?

Which neuronal populations are activated by different directions of the stimulus?

Given

Collection of neural time series

Goal

Find representations of data that reveal how responses are organized across space and time

