
PCA Derivation 
(Optional)



Eigendecomposition

All covariance matrices have an eigendecomposition

•                       (eigendecomposition)

•     is d × d (column are eigenvectors, sorted by their eigenvalues)

•     is d × d (diagonals are eigenvalues, off-diagonals are zero)

 
Eigenvector / Eigenvalue equation:

• By definition                (unit norm) 

• Example:
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PCA Formulation 

PCA: find lower-dimensional representation of raw data                

•     is n × d (raw data) 

•                is n × k (reduced representation, PCA ‘scores’) 

•     is d × k (columns are k principal components) 

• Variance / Covariance constraints
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PCA Formulation, k = 1  

Goal: Maximizes variance, i.e.,             max
p

||z||22σ2z ||p||2 = 1where  

PCA: find one-dimensional representation of raw data                

•     is n × d (raw data) 

•               is n × 1 (reduced representation, PCA ‘scores’) 

•     is d × 1 (columns are k principal components) 

• Variance constraint
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Relationship between Euclidean distance and dot product 

z = XpDefinition:

Transpose property:                         ; associativity of multiply(Xp)� = p�X�
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1
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Goal: Maximizes variance, i.e.,             max
p

||z||22σ2z ||p||2 = 1where  
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Recall eigenvector / eigenvalue equation:

• By definition               , and thus  

• But this is the expression we’re optimizing, and thus maximal 
variance achieved when     is top eigenvector of 

Similar arguments can be used for k > 1  

max
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p�CxpRestated Goal: ||p||2 = 1where  
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CXp

Connection to Eigenvectors



Distributed PCA



Computing PCA Solution

Given: n × d matrix of uncentered raw data
Goal: Compute k ≪ d dimensional representation 

Step 1: Center Data

Step 2: Compute Covariance or Scatter Matrix

•             versus 

Step 3: Eigendecomposition

Step 4: Compute PCA Scores
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PCA at Scale

Case 1: Big n and Small d 
• O(d2) local storage, O(d3) local computation, 

O(dk) communication 
• Similar strategy as closed-form linear regression

Case 2: Big n and Big d
• O(d) local storage and computation on     

workers, O(dk) communication 
• Iterative algorithm
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PCA at Scale

Case 1: Big n and Small d 
• O(d2) local storage, O(d3) local computation, 

O(dk) communication 
• Similar strategy as closed-form linear regression

Case 2: Big n and Big d
• O(d) local storage and computation on     

workers, O(dk) communication 
• Iterative algorithm
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Example: n = 6; 3 workers

O(nd) Distributed Storage
workers: x(1)

x(5)

x(3)

x(4)

x(2)

x(6)

Step 1: Center Data 

• Compute d feature means,  

• Communicate      to all workers 

• Subtract     from each data point

m � Rd

m

map: x(i) � m x(i) � m x(i) � m O(d) Local Computation

m



Step 2: Compute Scatter Matrix (         ) 

• Compute matrix product via outer products (just like 
we did for closed-form linear regression!)
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Step 2: Compute Scatter Matrix (         ) 

• Compute matrix product via outer products (just like 
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Step 2: Compute Scatter Matrix (         ) 

• Compute matrix product via outer products (just like 
we did for closed-form linear regression!)
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Example: n = 6; 3 workers
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Example: n = 6; 3 workers

O(nd) Distributed Storage
workers: x(1)

x(5)

x(3)

x(4)

x(2)

x(6)

map:

x(
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x(i) O(d2) Local Storage 
O(nd2) Distributed Computation

reduce:
�
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x(i) O(d2) Local Storage 
O(d3) Local Computation 

O(dk) Communication 

Step 3: Eigendecomposition 
• Perform locally since d is small 
• Communicate k principal components (               ) 

to workers
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Example: n = 6; 3 workers

O(nd) Distributed Storage
workers: x(1)

x(5)

x(3)

x(4)

x(2)

x(6)

Step 4: Compute PCA Scores 

• Multiply each point by principal components,

map: x(
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Distributed PCA, Part II 
(Optional) 



PCA at Scale

Case 1: Big n and Small d 
• O(d2) local storage, O(d3) local computation, 

O(dk) communication 
• Similar strategy as closed-form linear regression 

Case 2: Big n and Big d
• O(d) local storage and computation on     

workers, O(dk) communication 
• Iterative algorithm
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An Iterative Approach

We can use algorithms that rely on a sequence of matrix-
vector products to compute top k eigenvectors (   ) 
• E.g., Krylov subspace or random projection methods

Krylov subspace methods (used in MLlib) iteratively compute 
            for some             provided by the method                  
• Requires O(k) passes over data, O(d) local storage on workers 
• We don’t need to compute the covariance matrix!
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Repeat for O(k) iterations: 
1. Communicate               to all workers 

2. Compute                      in a distributed fashion 
• Step 1:                 
• Step 2:  
• Perform in single map-reduce! 

3. Driver uses     to update estimate of 

vi � Rd

qi = X�Xvi

bi = Xvi

qi = X�bi

Pqi = X�Xvi

•                      : each component is dot product

•       is a sum of rescaled data points, i.e., qi = X�bi qi =
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Example: n = 6; 3 workers

O(nd) Distributed Storage
workers: x(1)

x(5)

x(3)

x(4)

x(2)

x(6)

Compute                      in a distributed fashion 

•                      and  

• Locally compute each dot product and rescale each point 
before summing all rescaled points in reduce step!
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Lab Preview



Which areas are active at which times?

Which neuronal populations are activated by  
different directions of the stimulus?

Vladimirov et al., 
2014



Find representations of 
data that reveal how 
responses are organized 
across space and time

Collection of neural 
time series

Given

Goal
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