
Neuroscience 
Introduction



The brain



“As humans, we can identify galaxies light 
years away, we can study particles smaller 
than an atom. But we still haven’t unlocked 
the mystery of the three pounds of matter 
that sits between our ears.”

President Obama
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Studying the brain in humans

fMRI scanner human brain





~50,000 neurons per cubic millimeter 
-> need higher resolution!



multielectrode
10-100

two-photon
100-1000

light-sheet
100000



Vladimirov, et al., 2014



Sofroniew, et al., 2014



relating neuronal responses to properties of 
an animal and its environment

Moser et al., 2008

position of a 
mouse in maze

“place cell” “grid cell”



Ohki et al., 2006

fine-scale 
sensory 
tuning

Hubel & Weisel, 1959



Larval zebrafish, whole-brain
~100,000 neurons

1 TB

Mouse, somatosensory cortex
~1,000 neurons 0.1 TB / experiment

* Entire mouse brain
~80,000,000 neurons >100 TB

* hypothetical



Exploratory 
Data Analysis
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This is really big
This is complex



Unsupervised methodsSupervised methods

predict 
our data

as a function 
of other data

find structure 
in the data  
on its own

y = f(X) f(X)
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Clustering for preprocessing

- Raw data is complex and high-dimensional

- Clustering finds collections of inputs that are 
similar to one another

- These groups of clusters may be the more 
meaningful “unit” of measurement



Raw data Clustered data



Clustering to find waveforms associated 
with individual neurons based on their 

traces across multiple electrodes 



- Raw data is complex and high-dimensional

- Dimensionality reduction describes the data 
using a simpler, more compact representation

- This representation may make interesting 
patterns in the data more clear or easier to see

Dimensionality reduction for insight



Dimensionality
reduction



Yu and Cunningham, 2014

Dimensionality
reduction



Briggman et al., 2005



When the leech crawls

When the 
leech swims

When the 
leech changes 

its mind!

Briggman et al., 2005



Principal Component 
Analysis (PCA) Overview



To understand a phenomenon we measure various related quantities

If we knew what to measure or how to represent our measurements 
we might find simple relationships

But in practice we often measure redundant signals, e.g., US and 
European shoe sizes

We also represent data via the method by which it was gathered, 
e.g., pixel representation of brain imaging data

Raw data can be Complex, High-dimensional



Issues 
• Measure redundant signals 

• Represent data via the method by which it was gathered 

Goal: Find a ‘better’ representation for data 
• To visualize and discover hidden patterns 
• Preprocessing for supervised task, e.g., feature hashing

Dimensionality Reduction

How do we define ‘better’?
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E.g., Shoe Size

We take noisy measurements on 
European and American scale 
• Modulo noise, we expect perfect 

correlation 

How can we do ‘better’, i.e., find a 
simpler, compact representation? 
• Pick a direction and project onto 

this direction



American Size

Eu
ro

pe
an

 S
iz

e

We take noisy measurements on 
European and American scale 
• Modulo noise, we expect perfect 

correlation 

How can we do ‘better’, i.e., find a 
simpler, compact representation? 
• Pick a direction and project onto 

this direction

E.g., Shoe Size
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Minimize Euclidean distances between 
original points and their projections

PCA solution solves this problem!

Goal: Minimize Reconstruction Error
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y

Linear Regression — predict y from x. 
Evaluate accuracy of predictions 
(represented by blue line) by vertical 
distances between points and the line

PCA — reconstruct 2D data via 2D 
data with single degree of freedom. 
Evaluate reconstructions (represented 
by blue line) by Euclidean distances



American Size

Eu
ro

pe
an

 S
iz

e

Another Goal: Maximize Variance

To identify patterns we want to study 
variation across observations

Can we do ‘better’, i.e., find a compact 
representation that captures variation?
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Another Goal: Maximize Variance

To identify patterns we want to study 
variation across observations 

Can we do ‘better’, i.e., find a compact 
representation that captures variation? 
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Another Goal: Maximize Variance

To identify patterns we want to study 
variation across observations 

Can we do ‘better’, i.e., find a compact 
representation that captures variation? 

 
PCA solution finds directions of 
maximal variance!



PCA Assumptions and 
Solution



PCA Formulation 

PCA: find lower-dimensional representation of raw data               

•     is n × d (raw data)

•                is n × k (reduced representation, PCA ‘scores’)

•     is d × k (columns are k principal components)

• Variance constraints

P

X

Z = XP

Linearity assumption (               ) simplifies 
problem

Z = XP ≈ ≈

≈

X

P

Z =



σ21 =
1
n

n�

i=1

�
x(i)1

�2Variance of 1st feature 
(assuming zero mean) 

Variance of 1st feature σ21 =
1
n

n�

i=1

�
x(i)1 � μ1

�2

Given n training points with d features:

•                  : matrix storing points

•      : jth feature for ith point

•      : mean of jth feature

X � Rn�d

x(i)
j

μj



• Symmetric:                    

• Zero → uncorrelated 

• Large magnitude → (anti) correlated / redundant 

•                        → features are the same

σ12 = σ21

Given n training points with d features: 

•                  : matrix storing points 

•      : jth feature for ith point 

•      : mean of jth feature

X � Rn�d

x(i)
j

μj

σ12 =
1
n

n�

i=1

x(i)1 x(i)2Covariance of 1st and 2nd 
features (assuming zero mean)

σ12 = σ21 = σ22



Covariance Matrix

Covariance matrix generalizes this idea for many features 
 
 

• ith diagonal entry equals variance of ith feature

• ijth entry is covariance between ith and jth features

• Symmetric (makes sense given definition of covariance)

CX =
1
n
X�X

d × d covariance matrix with 
zero mean features
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Covariance: σ12 =
1
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i=1

x(i)1 x(i)2
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 Variance:

Dividing by n yields 
covariance matrix



What constraints make sense in reduced representation?

• No feature correlation, i.e., all off-diagonals in       are zero

• Rank-ordered features by variance, i.e., sorted diagonals of       

PCA Formulation 

PCA: find lower-dimensional representation of raw data                

•     is n × d (raw data) 

•                is n × k (reduced representation, PCA ‘scores’) 

•     is d × k (columns are k principal components) 

• Variance / Covariance constraints

P

X

Z = XP

CZ

CZ



PCA Formulation 

PCA: find lower-dimensional representation of raw data                

•     is n × d (raw data) 

•                is n × k (reduced representation, PCA ‘scores’) 

•     is d × k (columns are k principal components) 

• Variance / Covariance constraints

P

X

Z = XP

    equals the top k eigenvectors of CXP ≈ ≈

≈

X

P

Z =



PCA Solution 

All covariance matrices have an eigendecomposition 

•                       (eigendecomposition) 

•     is d × d (column are eigenvectors, sorted by their eigenvalues) 

•     is d × d (diagonals are eigenvalues, off-diagonals are zero)

The d eigenvectors are orthonormal directions of max variance 

• Associated eigenvalues equal variance in these directions 

• 1st eigenvector is direction of max variance (variance is     )

U

Λ

CX = UΛU�

λ1

In lab, we’ll use the eigh function from numpy.linalg



Choosing k
How should we pick the dimension of the new representation?

Visualization: Pick top 2 or 3 dimensions for plotting purposes

Other analyses: Capture ‘most’ of the variance in the data 
• Recall that eigenvalues are variances in the directions specified 

by eigenvectors, and that eigenvalues are sorted 

• Fraction of retained variance:
�k

i=1 λi�d
i=1 λi

Can choose k such that we 
retain some fraction of the 

variance, e.g., 95%



Other Practical Tips

PCA assumptions (linearity, orthogonality) not always appropriate 
• Various extensions to PCA with different underlying 

assumptions, e.g., manifold learning, Kernel PCA, ICA

Centering is crucial, i.e., we must preprocess data so that all 
features have zero mean before applying PCA 

PCA results dependent on scaling of data 
• Data is sometimes rescaled in practice before applying PCA



PCA Algorithm



Orthogonal and Orthonormal Vectors
Orthogonal vectors are perpendicular to each other
• Equivalently, their dot product equals zero
•                and                , but c isn’t orthogonal to others

Orthonormal vectors are orthogonal and have unit norm 
• a are b are orthonormal, but b are d are not orthonormal

a =
�
1 0

��
b =

�
0 1

��
c =

�
1 1

��
d =

�
2 0

��

a�b = 0 d�b = 0



PCA Iterative Algorithm 

k = 1: Find direction of max variance, project onto this direction 

• Locations along this direction are the new 1D representation
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More generally, for i in {1, …, k}:

• Find direction of max variance that is 
orthonormal to previously selected 
directions, project onto this direction

• Locations along this direction are the 
ith feature in new representation


