
Logistic Regression: 
Probabilistic Interpretation 



SVM (hinge), Logistic regression (logistic), Adaboost (exponential)

Approximate 0/1 Loss

0-1

Solution: Approximate 0/1 
loss with convex loss 

(“surrogate” loss)

Adaboost
Logistic

Regression

SVM

z = y · w�x

�(z)



Probabilistic Interpretation
Goal: Model conditional probability:  

Example: Predict rain from temperature, cloudiness, humidity 
•   x     
•   x   

Example: Predict click from ad’s historical performance, user’s 
click frequency, and publisher page’s relevance 
•  x    
•  x 

P[ y = rain | t = 70�F, c = HIGH, h = 95% ] = .9
P[ y = rain | t = 14�F, c = LOW, h = 2% ] = .05

P[ y = 1 |x ]

P[ y = click | h = GOOD, f = HIGH, r = HIGH ] = .1
P[ y = click | h = BAD, f = LOW, r = LOW ] = .001



Probabilistic Interpretation
Goal: Model conditional probability: 

First thought: 
• Linear regression returns any real number, but probabilities 

range from 0 to 1!

How can we transform or ‘squash’ its output?
• Use logistic (or sigmoid) function: 

P[ y = 1 |x ]

P[ y = 1 |x ] = w�x

P[ y = 1 |x ] = σ(w�x)



Logistic Function

σ(z) =
1

1+ exp(�z)

z

σ(z)

Maps real numbers to 

• Large positive inputs ⇒ 1  

• Large negative inputs ⇒ 0

[0, 1]



Probabilistic Interpretation

Goal: Model conditional probability: 

Logistic regression uses logistic function to model this 
conditional probability
•   
•  

P[ y = 1 |x ]

P[ y = 1 |x ] = σ(w�x)

P[ y = 0 |x ] = 1� σ(w�x)

y � {0, 1}For notational convenience we now define



How Do We Use Probabilities?
To make class predictions, we need to convert probabilities to 
values in  

We can do this by setting a threshold on the probabilities
•  Default threshold is 0.5 
•  x 

y � {0, 1}

P[ y = 1 |x ] > 0.5 =� ŷ = 1

Example: Predict rain from temperature, cloudiness, humidity 
•   
•  P[ y = rain | t = 70�F, c = HIGH, h = 95% ] = .9

P[ y = rain | t = 14�F, c = LOW, h = 2% ] = .05 ŷ = 0
ŷ = 1



Decision Boundary
Connection with Decision Boundary?

x1

x2

ŷ =
3�

i=0

wixi = w�x =� ŷ = sign(w�x)

ŷ = 1 : w�x > 0

Threshold by sign to make class 
predictions: 
•   
•   
•  decision boundary: 

ŷ = 0 : w�x < 0
w�x = 0

How does this compare with thresholding probability? 
•  P[ y = 1 |x ] > 0.5 =� ŷ = 1P[ y = 1 |x ] = σ(w�x)



Connection with Decision Boundary?

How does this compare with thresholding probability? 
•   x 
•  With threshold of 0.5, the decision boundaries are identical!

P[ y = 1 |x ] > 0.5 =� ŷ = 1P[ y = 1 |x ] = σ(w�x)

z

σ(z)

ŷ =
3�

i=0

wixi = w�x =� ŷ = sign(w�x)

ŷ = 1 : w�x > 0

Threshold by sign to make class 
predictions: 
•   
•   
•  decision boundary: 

ŷ = 0 : w�x < 0
w�x = 0

σ(0) = 0.5

w�x = 0 �� σ(w�x) = 0.5



Using Probabilistic 
Predictions



How Do We Use Probabilities?
To make class predictions, we need to convert probabilities to 
values in  

We can do this by setting a threshold on the probabilities
•  Default threshold is 0.5 
•  x 

y � {0, 1}

P[ y = 1 |x ] > 0.5 =� ŷ = 1

Example: Predict rain from temperature, cloudiness, humidity 
•   
•  P[ y = rain | t = 70�F, c = HIGH, h = 95% ] = .9

P[ y = rain | t = 14�F, c = LOW, h = 2% ] = .05 ŷ = 0
ŷ = 1



Setting different thresholds

In spam detection application, we model 

Two types of error  
• Classify a not-spam email as spam (false positive, FP) 
• Classify a spam email as not-spam (false negative, FN) 

Can argue that false positives are more harmful than false negatives 
• Worse to miss an important email than to have to delete spam  

We can use a threshold greater than 0.5 to be more ‘conservative’

P[ y = spam |x ]



False Positive Rate (FPR)
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Threshold = 1

Perfect Classification Threshold = 0

FPR at 0.1

ROC plot displays FPR vs TPR 
• Top left is perfect 
• Dotted Line is random prediction 

(i.e., biased coin flips) 
Can classify at various thresholds (T) 
T = 0: Everything is spam 
• TPR = 1, but FPR = 1
T = 1: Nothing is spam 
• FPR = 0, but TPR = 0
We can tradeoff between TPR/FPR FPR: % not-spam predicted as spam 

TPR: % spam predicted as spam

Random 
Prediction

ROC Plots: Measuring Varying Thresholds



Working Directly with Probabilities

Success can be less than 1% [Andrew Stern, iMedia Connection, 2010] 

Probabilities provide more granular information 
• Confidence of prediction 
• Useful when combining predictions with other information 
In such cases, we want to evaluate probabilities directly 
• Logistic loss makes sense for evaluation!

Example: Predict click from ad’s historical performance, user’s 
click frequency, and publisher page’s relevance 
•     
•  

ŷ = 0
ŷ = 0

P[ y = click | h = GOOD, f = HIGH, r = HIGH ] = .1
P[ y = click | h = BAD, f = LOW, r = LOW ] = .001



�log(p, y) =

�
� log(p) if y = 1
� log(1 � p) if y = 0

When           , we want  
• No penalty at 1 
• Increasing penalty away from 1 

Similar logic when 
p

� log(p) � log(1� p)

Logistic Loss

y = 0

y = 1 p = 1



Categorical Data and 
One-Hot-Encoding



Logistic Regression Optimization

Logistic Regression: Learn mapping (    ) that minimizes 
logistic loss on training data with a regularization term  

Regularized
w

min
w

n�

i=1

�0/1
�
y(i) · w�x(i)

�
+ λ||w||22

Training LogLoss Model Complexity

Data is assumed to be numerical! 
Similar story for linear regression and many other methods



Images User Ratings

Raw Data is Sometimes Numeric



Web hypertext

Email

Genomic 
Data

Raw Data is Often Non-Numeric



Raw Data is Often Non-Numeric

Example: Click-through Rate Prediction 
• User features: Gender, Nationality, Occupation, … 
• Advertiser / Publisher: Industry, Location, … 
• Ad / Publisher Site: Language, Text, Target Audience, …



How to Handle Non-Numeric Features?

Option 1: Use methods that support these features 
• Some methods, e.g., Decision Trees, Naive Bayes, 

naturally support non-numerical features 
• However, this limits our options 

Option 2: Convert these features to numeric features 
• Allows us to use a wider range of learning methods 
• How do we do this?



Types of Non-Numeric Features
Categorical Feature  
• Has two or more categories 
• No intrinsic ordering to the categories 
• E.g., Gender, Country, Occupation, Language 

Ordinal Feature  
• Has two or more categories 
• Intrinsic ordering, but no consistent spacing between 

categories, i.e., all we have is a relative ordering 
• Often seen in survey questions, e.g., “Is your health 

poor, reasonable, good, excellent”



Non-Numeric ⇒ Numeric

One idea: Create single numerical feature to represent non-
numeric one 

Ordinal Features: 
• Health categories = {‘poor’, ‘reasonable’, ‘good’, ‘excellent’} 
• ‘poor’ = 1, ‘reasonable’ = 2, ’good’ = 3, ’excellent’ = 4 

We can use a single numerical feature that preserves this 
ordering … but ordinal features only have an ordering and we 
introduce a degree of closeness that didn't previously exist



Non-Numeric ⇒ Numeric

One idea: Create single numerical feature to represent non-
numeric one 

Categorical Features: 
• Country categories = {‘ARG’, ‘FRA’, ’USA’} 
• ‘ARG’ = 1, ‘FRA’ = 2, ’USA’ = 3 
• Mapping implies FRA is between ARG and USA 

Creating single numerical feature introduces relationships 
between categories that don’t otherwise exist



Non-Numeric ⇒ Numeric

Another idea (One-Hot-Encoding): Create a ‘dummy’ feature 
for each category 

Categorical Features: 
• Country categories = {‘ARG’, ‘FRA’, ’USA’} 
• We introduce one new dummy feature for each category 
• ‘ARG’ ⇒ [1 0 0],     ‘FRA’ ⇒ [0 1 0],     ‘USA’ ⇒ [0 0 1] 

Creating dummy features doesn’t introduce spurious relationships



Computing and 
Storing OHE Features



Features: 
• Animal = {‘bear’, ‘cat’, ’mouse’} 
• Color = {‘black’, ‘tabby’} 
• Diet (optional) = {‘mouse’, ‘salmon’} 

Datapoints: 
• A1 = [‘mouse’, ‘black’, - ] 
• A2 = [‘cat’, ‘tabby’, ‘mouse’] 
• A3 = [‘bear’, ‘black’, ’salmon’]

How can we create OHE features?

Example: Categorical Animal Dataset



Features: 
• Animal = {‘bear’, ‘cat’, ’mouse’} 
• Color = {‘black’, ‘tabby’} 
• Diet = {‘mouse’, ‘salmon’} 

7 dummy features in total 
• ‘mouse’ category distinct for 

Animal and Diet features

OHE Dictionary: Maps each 
category to dummy feature  
• (Animal, ‘bear’) ⇒  0 
• (Animal, ‘cat’) ⇒  1 
• (Animal, ‘mouse’) ⇒  2 
• (Color, ‘black’) ⇒  3 
• …

Step 1: Create OHE Dictionary



OHE Features: 
• Map non-numeric feature to it’s 

binary dummy feature 
• E.g., A1 = [0, 0, 1, 1, 0, 0, 0]

OHE Dictionary: Maps each 
category to dummy feature  
• (Animal, ‘bear’) ⇒  0 
• (Animal, ‘cat’) ⇒  1 
• (Animal, ‘mouse’) ⇒  2 
• (Color, ‘black’) ⇒  3 
• …

Step 2: Create Features with Dictionary
Datapoints: 
• A1 = [‘mouse’, ‘black’, - ] 
• A2 = [‘cat’, ‘tabby’, ‘mouse’] 
• A3 = [‘bear’, ‘black’, ’salmon’]



OHE Features are Sparse
For a given categorical feature only a single OHE feature is 
non-zero — can we take advantage of this fact? 

Dense representation: Store all numbers 
• E.g., A1 = [0, 0, 1, 1, 0, 0, 0] 

Sparse representation: Store indices / values for non-zeros 
• Assume all other entries are zero 
• E.g., A1 = [ (2,1), (3,1) ]



Sparse Representation
Example: Matrix with 10M observation and 1K features 
• Assume 1% non-zeros 

Dense representation: Store all numbers 
• Store 10M × 1K entries as doubles ⇒ 80GB storage 

Sparse representation: Store indices / values for non-zeros 
• Store value and location for non-zeros (2 doubles per entry) 
• 50× savings in storage! 
• We will also see computational saving for matrix operations



Feature Hashing



Non-Numeric ⇒ Numeric

One-Hot-Encoding: Create a ‘dummy’ feature for each category 

Creating dummy features doesn’t introduce spurious relationships 

Dummy features can drastically increase dimensionality 
• Number of dummy features equals number of categories! 

Issue with CTR prediction data 
• Includes many names (of products, advertisers, etc.) 
• Text from advertisement, publisher site, etc.



“Bag of Words” Representation 

Represent each document with a vocabulary of words 
Over 1M words in English [Global Language Monitor, 2014] 
We sometimes consider bigrams or adjacent words (similar 
idea to quadratic features)

Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by 
giving us your money..."

From: bob@good.com

"Hi, it's been a while!  
How are you? ..."

Vocabulary
been
debt

eliminate
giving
how
it's
money
while

Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by 
giving us your money..."

From: bob@good.com

"Hi, it's been a while!  
How are you? ..."

Vocabulary
been
debt

eliminate
giving
how
it's
money
while

Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by 
giving us your money..."

been

debt

eliminate

giving

how

it's

money

while

0

1

1

1

0

0

1

0



High Dimensionality of OHE

Statistically: Inefficient learning 
• We generally need bigger n when we have bigger d (though 

in distributed setting we often have very large n) 
• We will have many non-predictive features 

Computationally: Increased communication 
• Linear models have parameter vectors of dimension d 
• Gradient descent communicates the parameter vector to all 

workers at each iteration



How Can We Reduce Dimension?
One Option: Discard rare features  
• Might throw out useful information (rare ≠ uninformative) 
• Must first compute OHE features, which is expensive 

Another Option: Feature hashing 
• Use hashing principles to reduce feature dimension 
• Obviates need to compute expensive OHE dictionary  
• Preserves sparsity 
• Theoretical underpinnings

Can view as an unsupervised 
learning preprocessing step



High-Level Idea
Hash tables are an efficient data structure for data lookup, 
and hash functions also useful in cryptography 

Hash Function: Maps an object to one of m buckets 
• Should be efficient and distribute objects across buckets 

In our setting, objects are feature categories 
• We have fewer buckets than feature categories 
• Different categories will ‘collide’, i.e., map to same bucket 
• Bucket indices are hashed features



Datapoints: 7 feature categories 
• A1 = [‘mouse’, ‘black’, - ] 
• A2 = [‘cat’, ‘tabby’, ‘mouse’] 
• A3 = [‘bear’, ‘black’, ’salmon’]

Feature Hashing Example
Hash Function: m = 4 
• H(Animal, ’mouse’) = 3 
• H(Color, ’black’) = 2 

• H(Animal, ’cat’) = 0 
• H(Color, ’tabby’) = 0 
• H(Diet, ’mouse’) = 2 

• H(Animal, ’bear’) = 0 
• H(Color, ’black’) = 2 
• H(Diet, ’salmon’) = 1

Hashed Features: 
• A1 = [ 0 0 1 1 ] 
• A2 = [ 2 0 1 0 ] 
• A3 = [ 1 1 1 0 ]



Why Is This Reasonable?
Hash features have nice theoretical properties 
• Good approximations of inner products of OHE features 

under certain conditions 
• Many learning methods (including linear / logistic regression) 

can be viewed solely in terms of inner products 

Good empirical performance 
• Spam filtering and various other text classification tasks 

Hashed features are a reasonable alternative for OHE features



Distributed Computation

Step 1: Apply hash function on raw data 
• Local computation and hash functions are usually fast 
• No need to compute OHE features or communication 

Step 2: Store hashed features in sparse representation 
• Local computation  
• Saves storage and speeds up computation



CTR Prediction 
Pipeline / Lab Preview



Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data

training 
set

full 
dataset

test set

new entity

predictionaccuracy

model

validation 
set

Goal: Estimate    (click | user, ad, publisher info) 
Given: Massive amounts of labeled data

P



Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data

training 
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full 
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new entity

predictionaccuracy

model

validation 
set

Raw Data: Criteo Dataset from Kaggle competition 
• We’ll work with subsample of larger CTR dataset 
• 39 masked user, ad and publisher features 
• Full Kaggle dataset has 33M distinct categories (and 

this dataset is a small subset of Criteo’s actual data)



Split Data: Create training, validation, and test sets

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data

training 
set
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test set

new entity

predictionaccuracy

model

validation 
set



Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning
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full 
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predictionaccuracy

model
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set

Feature Extraction: One-hot-encoding and 
feature hashing 
• We’ll use a sparse data representation 
• We’ll visualize feature frequency 
• Feature extraction is the main focus of this lab



Supervised Learning: Logistic regression 
• Use MLlib implementation
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Evaluation (Part 1): Hyperparameter tuning 
• Grid search to find good values for regularization 
• Evaluate using logistic loss 
• Visualize grid search 
• Visualize predictions via ROC curve
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training 
set

full 
dataset

test set

new entity

predictionaccuracy

model

validation 
set

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split DataEvaluation (Part 2): Evaluate final model 
• Evaluate using logistic loss 
• Compare to baseline model (always predict 

value equal to the fraction of training points 
that correspond to click-through events)



Predict: Final model could be used to predict 
click-through rate for new user-ad tuple (we won’t 
do this though)
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