
Gradient Descent

Linear Regression Optimization

Goal: Find that minimizes  
  

• Closed form solution exists
• Gradient Descent is iterative

(Intuition: go downhill!)

f(w) = ||Xw � y||22

w�

w

f(w)

w*

Scalar objective: f(w) = ||wx � y||22 =
n�

j=1

(wx(j) � y(j))2

Gradient Descent

Start at a random point

w

f(w)

w0w*

Gradient Descent

Start at a random point

Determine a descent direction

w

f(w)

w0w*

Gradient Descent

Start at a random point

Determine a descent direction
Choose a step size

w

f(w)

w0w*

Gradient Descent

Start at a random point

Determine a descent direction
Choose a step size
Update

w

f(w)

w1 w0w*

Start at a random point
Repeat

Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

Gradient Descent

w

f(w)

w1 w0w*

Start at a random point
Repeat

Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

Gradient Descent

w

f(w)

w1 w0w*

Start at a random point
Repeat

Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

Gradient Descent

w

f(w)

w1 w0w*

Start at a random point
Repeat

Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

Gradient Descent

w

f(w)

w1 w0w*

Start at a random point
Repeat

Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

Gradient Descent

w

f(w)

w2 w1 w0w*

Start at a random point
Repeat

Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

Gradient Descent

w

f(w)

w* …

Start at a random point
Repeat

Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

Gradient Descent

w

f(w)

w2 w1 w0w* …

w

g(w) Non-convex

Any local minimum is a global minimum

Where Will We Converge?

Least Squares, Ridge Regression and
Logistic Regression are all convex!

…

…

w

f(w) Convex

w*

Multiple local minima may exist
w*w!

…

Update Rule: wi+1 = wi � αi
df
dw

(wi)

Choosing Descent Direction (1D)

We can only move in two directions
Negative slope is direction of descent!

w0 w

f(w)

w* w

f(w)

w*

positive ⇒ go left!

w0

negative ⇒ go right!

zero ⇒ done!

Step Size

Negative Slope

We can move anywhere in

Negative gradient is direction of
steepest descent!

Rd

2D Example:

• Function values are in black/white
and black represents higher values

• Arrows are gradients

"Gradient2" by Sarang. Licensed under CC BY-SA 2.5 via Wikimedia Commons
http://commons.wikimedia.org/wiki/File:Gradient2.svg#/media/File:Gradient2.svg

Choosing Descent Direction

Update Rule:

Step Size

Negative Slope

wi+1 = wi � αi�f(wi)

Gradient Descent for Least Squares

Scalar objective:

Derivative:

Scalar Update:

Vector Update:

(2 absorbed in) α

(chain rule)

Update Rule:

f(w) = ||wx � y||22 =
n�

j=1

(wx(j) � y(j))2

wi+1 = wi � αi

n�

j=1

(w�
i x(j) � y(j))x(j)

wi+1 = wi � αi

n�

j=1

(wix(j) � y(j))x(j)

df
dw

(w) = 2
n�

j=1

(wx(j) � y(j))x(j)

wi+1 = wi � αi
df
dw

(wi)

Choosing Step Size

Theoretical convergence results for various step sizes

A common step size is

Too small: converge
very slowly

w

f(w)

w*

Too big: overshoot and
even diverge

w

f(w)

w*

Reduce size over time
w

f(w)

w*

αi =
α

n
�
i

Constant

Iteration ## Training Points

Example: n = 6; 3 workers

workers: x(1)

x(5)

x(3)

x(4)

x(2)

x(6)

O(nd) Distributed
Storage

Parallel Gradient Descent for Least Squares
Vector Update: wi+1 = wi � αi

n�

j=1

(w�
i x(j) � y(j))x(j)

Compute summands in parallel!
note: workers must all have wi

O(nd)
Distributed

Computation
O(d) Local

Storage
map: (w�

i x(j) � y(j))x(j) (w�
i x(j) � y(j))x(j) (w�

i x(j) � y(j))x(j)

reduce: O(d) Local
Computation

O(d) Local
Storage

n�

j=1

(w�
i x(j) � y(j))x(j)

wi+1

Example: n = 6; 3 workers

workers: x(1)

x(5)

x(3)

x(4)

x(2)

x(6)

O(nd) Distributed
Storage

Parallel Gradient Descent for Least Squares
Vector Update: wi+1 = wi � αi

n�

j=1

(w�
i x(j) � y(j))x(j)

Compute summands in parallel!
note: workers must all have wi

O(nd)
Distributed

Computation
O(d) Local

Storage
map: (w�

i x(j) � y(j))x(j) (w�
i x(j) � y(j))x(j) (w�

i x(j) � y(j))x(j)

reduce: O(d) Local
Computation

O(d) Local
Storage

n�

j=1

(w�
i x(j) � y(j))x(j)

wi+1

Pros:

• Easily parallelized

• Cheap at each iteration

• Stochastic variants can make
things even cheaper

Cons:

• Slow convergence (especially
compared with closed-form)

• Requires communication
across nodes!

Gradient Descent Summary

Communication Hierarchy

Communication Hierarchy

CPU

2 billion cycles/sec per core

Clock speeds not changing,
but number of cores growing

with Moore’s Law

Communication Hierarchy

CPU

50 GB/s

RAM

Communication Hierarchy

CPU

50 GB/s

RAM

10-100 GB
Capacity growing with

Moore’s Law

Communication Hierarchy

CPU

50 GB/s

100
MB/s

Disk

RAM

Communication Hierarchy

CPU

50 GB/s

100
MB/s

Disk

RAM

1-2 TB
Capacity growing

exponentially, but not
speed

Communication Hierarchy

CPU

50 GB/s

100
MB/s

Disk

RAM

×10

Communication Hierarchy

CPU

50 GB/s

100
MB/s

Disk

RAM

×10

Communication Hierarchy
Network

Top-of-rack 
switch

CPU

50 GB/s

100
MB/s

Disk

RAM

×10

Communication Hierarchy
Network

Top-of-rack 
switch

CPU

50 GB/s

100
MB/s

Disk

RAM

×10

10Gbps
(1 GB/s)

Nodes in 
same rack

10Gbps

Communication Hierarchy
Network

10Gbps
(1 GB/s)

Top-of-rack 
switch

Nodes in 
same rack

10Gbps

CPU

50 GB/s

100
MB/s

Disk

RAM

×10

Nodes in 
other racks

3Gbps

Summary
Access rates fall sharply with distance
50× gap between memory and network!

CPU

50 GB/s
1 GB/s

Local disksRAM Rack

0.3 GB/s1 GB/s

Must be mindful of this hierarchy when
developing parallel algorithms!

Different
Racks

Distributed ML:
Communication Principles

Access rates fall sharply with distance
• Parallelism makes computation fast
• Network makes communication slow

Must be mindful of this hierarchy when
developing parallel algorithms!

Communication Hierarchy

CPU

50 GB/s
1 GB/s

Local disksRAM Rack

0.3 GB/s1 GB/s

Different
Racks

Persisting in memory reduces communication
• Especially for iterative computation (gradient descent)
Scale-up (powerful multicore machine)
• No network communication
• Expensive hardware, eventually hit a wall

2nd Rule of thumb
Perform parallel and in-memory computation

CPU

Disk

RAM

CPU
Disk

RAM

Persisting in memory reduces communication
• Especially for iterative computation (gradient descent)
Scale-out (distributed, e.g., cloud-based)
• Need to deal with network communication
• Commodity hardware, scales to massive problems

2nd Rule of thumb
Perform parallel and in-memory computation

Network

CPU

Disk

RAM …

CPU

Disk

RAM

CPU

Disk

RAM

CPU

Disk

RAM

Persisting in memory reduces communication
• Especially for iterative computation (gradient descent)
Scale-out (distributed, e.g., cloud-based)
• Need to deal with network communication
• Commodity hardware, scales to massive problems

2nd Rule of thumb
Perform parallel and in-memory computation

Network

CPU

Disk

RAM …

CPU

Disk

RAM

CPU

Disk

RAM

CPU

Disk

RAM

← Persist training data across iterations

Q: How should we leverage distributed computing while
mitigating network communication?

First Observation: We need to store and potentially
communicate Data, Model and Intermediate objects
• A: Keep large objects local

3rd Rule of thumb
Minimize Network Communication

Example: Linear regression, big n and small d
• Solve via closed form (not iterative!)
• Communicate O(d2) intermediate data

3rd Rule of thumb
Minimize Network Communication - Stay Local

workers: x(1)

x(5)

x(3)

x(4)

x(2)

x(6)

map:
x(

i)

x(i)

x(
i)

x(i)

x(
i)

x(i)

()-1reduce: �
x(

i)

x(i)

3rd Rule of thumb
Minimize Network Communication - Stay Local

workers: x(1)

x(5)

x(3)

x(4)

x(2)

x(6)

reduce:

map: (w�
i x(j) � y(j))x(j) (w�

i x(j) � y(j))x(j) (w�
i x(j) � y(j))x(j)

n�

j=1

(w�
i x(j) � y(j))x(j)

wi+1

Example: Linear regression, big n and big d
• Gradient descent, communicate
• O(d) communication OK for fairly large d
• Compute locally on data (Data Parallel)

3rd Rule of thumb
Minimize Network Communication - Stay Local

workers: x(1)

x(5)

x(3)

x(4)

x(2)

x(6)

reduce:

map: (w�
i x(j) � y(j))x(j) (w�

i x(j) � y(j))x(j) (w�
i x(j) � y(j))x(j)

n�

j=1

(w�
i x(j) � y(j))x(j)

wi+1

wi

Example: Hyperparameter tuning for ridge regression
with small n and small d

• Data is small, so can communicate it
• ‘Model’ is collection of regression models corresponding

to different hyperparameters
• Train each model locally (Model Parallel)

3rd Rule of thumb
Minimize Network Communication - Stay Local

3rd Rule of thumb
Minimize Network Communication - Stay Local

Example: Linear regression, big n and huge d
• Gradient descent
• O(d) communication slow with hundreds of millions parameters
• Distribute data and model (Data and Model Parallel)

• Often rely on sparsity to reduce communication

Second Observation: ML methods are typically iterative
• A: Reduce # iterations

3rd Rule of thumb
Minimize Network Communication

Q: How should we leverage distributed computing while
mitigating network communication?

First Observation: We need to store and potentially
communicate Data, Model and Intermediate objects
• A: Keep large objects local

3rd Rule of thumb
Minimize Network Communication - Reduce Iterations

Distributed iterative algorithms must compute and communicate
• In Bulk Synchronous Parallel (BSP) systems, e.g., Apache Spark, we

strictly alternate between the two

Distributed Computing Properties
• Parallelism makes computation fast
• Network makes communication slow

Idea: Design algorithms that compute more, communicate less
• Do more computation at each iteration
• Reduce total number of iterations

3rd Rule of thumb
Minimize Network Communication - Reduce Iterations

Extreme: Divide-and-conquer
• Fully process each partition locally, communicate final result
• Single iteration; minimal communication
• Approximate results

3rd Rule of thumb
Minimize Network Communication - Reduce Iterations

Less extreme: Mini-batch
• Do more work locally than gradient descent before communicating
• Exact solution, but diminishing returns with larger batch sizes

3rd Rule of thumb
Minimize Network Communication - Reduce Iterations

Throughput: How many bytes per second can be read
Latency: Cost to send message (independent of size)

Latency
Memory 1e-4 ms

Hard Disk 10 ms
Network (same datacenter) .25 ms

Network (US to Europe) >5 ms

We can amortize latency!
• Send larger messages
• Batch their communication
• E.g., Train multiple models together

1st Rule of thumb
Computation and storage should be linear (in n, d)

2nd Rule of thumb
Perform parallel and in-memory computation

3rd Rule of thumb
Minimize Network Communication

Lab Preview

Goal: Predict song’s release year from audio features

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data

training
set

full
dataset

test set

new entity

predictionaccuracy

model

validation
set

Raw Data: Millionsong Dataset from UCI ML Repository
• Explore features
• Shift labels so that they start at 0 (for interpretability)
• Visualize data

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data

training
set

full
dataset

test set

new entity

predictionaccuracy

model

validation
set

Split Data: Create training, validation, and test sets

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data

training
set

full
dataset

test set

new entity

predictionaccuracy

model

validation
set

Feature Extraction:
• Initially use raw features
• Subsequently compare with quadratic features

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data

training
set

full
dataset

test set

new entity

predictionaccuracy

model

validation
set

Supervised Learning: Least Squares Regression
• First implement gradient descent from scratch
• Then use MLlib implementation
• Visualize performance by iteration

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data

training
set

full
dataset

test set

new entity

predictionaccuracy

model

validation
set

Evaluation (Part 1): Hyperparameter tuning
• Use grid search to find good values for regularization

and step size hyperparameters
• Evaluate using RMSE
• Visualize grid search

training
set

full
dataset

test set

new entity

predictionaccuracy

model

validation
set

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data

Evaluation (Part 2): Evaluate final model
• Evaluate using RMSE
• Compare to baseline model that returns

average song year in training data

training
set

full
dataset

test set

new entity

predictionaccuracy

model

validation
set

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data

Predict: Final model could be used to predict song
year for new songs (we won’t do this though)

training
set

full
dataset

test set

new entity

predictionaccuracy

model

validation
set

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data

transform()

fit()

Transformer Estimator

Pipeline

Transformer

Pipeline

Binarizer VectorAssembler LinearRegression

Pipeline PipelineModelTrain
Data

fit

PipelineModel

Binarizer LinearRegressionModelVectorAssembler

PipelineModelTest
Data

transform Predictions

StandardScaler LinearRegression

Pipeline

Pipeline PipelineModelTrain
Data

fit

PipelineModel

LinearRegressionModelStandardScalerModel

PipelineModelTest
Data

transform Predictions

