Gradient Descent

UCLA
€databricks

| inear Regression Optimization

Goal: Find w* that minimizes /"
flw) = [|Xw —y|3

® (losed form solution exists

® (Gradient Descent is iterative
(Intuition: go downhill!)

v:v* W

Scalar objective: flw) = |lwx —yl[3 =) (wa¥) — y))?
j=1

Gradient Descent

fw)

Start at a random point

Gradient Descent

fw)

Start at a random point

Determine a descent direction

Gradient Descent

fw)

Start at a random point

Determine a descent direction
Choose a step size

Gradient Descent

fw)

Start at a random point

Determine a descent direction
Choose a step size
Update

Gradient Descent

fw)

Start at a random point

Repeat
Determine a descent direction
Choose a step size
Update

Until stopping criterion Is satisfied

Gradient Descent

fw)

Start at a random point
Repeat
| Determine a descent direction
Choose a step size
Update
Until stopping criterion Is satisfied

Gradient Descent

fw)

Start at a random point
Repeat
| Determine a descent direction
Choose a step size
Update
Until stopping criterion Is satisfied

Gradient Descent

fw)

Start at a random point
Repeat
Determine a descent direction
| Choose a step size
Update
Until stopping criterion Is satisfied

Gradient Descent

fw)

Start at a random point
Repeat
Determine a descent direction
Choose a step size
| Update
Until stopping criterion Is satisfied

Gradient Descent

fw)

Start at a random point

Repeat
Determine a descent direction
Choose a step size
Update

Until stopping criterion Is satisfied

Gradient Descent

fw)

Start at a random point

Repeat
Determine a descent direction
Choose a step size
Update

Until stopping criterion Is satisfied

Where Will We Converge”?

J(w) Convex g(w) Non-convex

w e W
Any local minimum is a global minimum Multiple local minima may exist

Least Squares, Ridge Regression and
Logistic Regression are all convex!

Choosing Descent Direction (1D)

f(W) positive = go left! f (W)

\ negative = go right!

zero = donel B f

wo %%, W
Step Size
We can only move in two directions \ d
| o Update Rule: w; . | = w; — a,
Negative slope Is direction of descent! \/

Negative Slope

Choosing Descent Direction

N Ny ¥ ¥

A BN

<<
<<
<<
« <
<<
<<
<<

"Gradient2" by Sarang. Licensed under CC BY-SA 2.5 via Wikimedia Commons
http://commons.wikimedia.org/wiki/File:Gradient2.svg#/media/File:Gradient2.svg

We can move anywhere In

d

Negative gradient Is direction of

steepest descent!

2D Example:

® Function values are in black/white
and black represents higher values

® Arrows are gradients

Step Size

\

Update Rule:w;..; = w; — a;Vf(w;)

%

Negative Slope

Gradient Descent for Least Squares

df
dw (

Update Rule: w;, | = w; — a;—— (w;)

n

Scalar objective: f(w) = |wx —y|3 = > (wa¥) —yU))?
j=1

o df T el
Derivative: %(w) — 2;(wx] — yV)xV

(chain rule)

Scalar Update: wip1 = w; — a; » (wix/) — yU))x)

(2 absorbed in a) =1

Vector Update: wiy1 =w; — a; ¥ (w, xV) —y)xV)

J=1

Choosing Step Size

Jw) Jw) Jw)
w* w w’ w w’ w
Too small: converge Joo big: overshoot and Reduce size over time
very slowly even diverge

Theoretical convergence results for various step sizes

o — Constant

A common step size Is a; =

Training Points — n\/;\ teration

Parallel Gradient Descent for Least Squares

n
Vector Update: w1 =w; — a; Z(W;X(j) — y(j))x<j)
Jj=1
Compute summands in parallel!
note: workers must all have w;
Example: n = 0; 3 workers
- WOrkers: (1) — — x(3)— (2 — O(nd) Distributed
3 — x(5)— — x(4)— — x(6)— StOrage
map: (WTXo)l_ Y0 x0) (WTXo)l_))x0) (WTXQ)_l))x W) O(nd) O(d) Local
| ’ | ’ i Distributed Storage
\ l / Computation J
reduce: (w;' xV) — yU)xU) O(d) Local O(d) Local
=1 Computation Storage

for 1 1n range(numlters):
alpha_1 = alpha / (n * np.sqrt(i+1))
gradient = train.map(lambda lp: gradientSummand(w, Llp))

.sum()
w —-= alpha_1 * gradient
return w
WOrkers: O(nd) Distributed
} Storage
O(nd)
. WTX(J) _ vy U) WTX(J) _ v xU) WTX(J) 0) T
maps xSy O O i Ol Loca
\\\\\. l ///// Computation J
reduce: (w,"x) — y))x) O(d) Local O(d) Local

j=1

Computation Storage

Gradient Descent Summary

Pros: Cons:

® [asily parallelized ® Slow convergence (especially

® (Cheap at each iteration compared with closed-form)

® Stochastic variants can make ® Requires communication
things even cheaper across nodes!

x“o
A
X4
X, S
X, ,
X0

Communication Hierarchy

UCLA
€databricks

Communication Hierarchy

{ 2 billion cycles/sec per Core\

Clock speeds not changing,
but number of cores growing
\ with Moore’s Law /

Communication Hierarchy

Communication Hierarchy

10-100 GB

Capacity growing with
Moore’s Law

S

Communication Hierarchy

50 S

Communication Hierarchy

S

{ 1-2 1B

Capacity growing
exponentially, but not
speed

Communication Hierarchy

S

e T T
\

~

— . . . T B B B RSN B B B MmN e B B M e M
N o o o o o O O D S D S S e S e S e e

Disk

N -

S e o o o o EE S o S O S N SN B BN BEE BEE EEE BEE BEE EEE EEE EEE M B

”~

/

Communication Hierarchy

S

- o O O EEE RS B B e e e R B B B e e e EEe M B S e

S
\

/

Disk

N -

S e o o o o EE S o S O S N SN B BN BEE BEE EEE BEE BEE EEE EEE EEE M B

”~

/

Communication Hierarchy

JTop-of-rack

switch

Network

S

e T T
\

~

— . . . T B B B RSN B B B MmN e B B M e M
N o o o o o O O D S D S S e S e S e e

Disk

N -

S e o o o o EE S o S O S N SN B BN BEE BEE EEE BEE BEE EEE EEE EEE M B

”~

/

ommunication Hierarchy

lop-o

e e - - ——-———————————— -

”~

- o O O EEE RS B B e e e R B B B e e e EEe M B S e

7 ~

Disk

N -

S e o o o o EE S o S O S N SN B BN BEE BEE EEE BEE BEE EEE EEE EEE M B

/

X

Network

10Gbps
1 GB/s

—rack

SWI

ch

10Gbps

Nodes in

same rack

7o

ik
il

|

il |
i

il

il

1

il

i
|
|
]
|
|
|
|
|
]
|
|
|
|
|
]
|
|
|
|
|
|
|
|
]
|
|
|
|
|
]
|
|
|
|
|
]
|
|
|
|

UALRCACLALAL
I

@~ 0

Communication Hierarchy

Top-of-rack
Network switch
_1 O G b p S ARmEEEN AmmmENE e __—
1 GB/s

10Gbps 3Gbps

§ Nodes in

i same rack .

; - Nodes in

; o= other racks
Disk X =

S e o o o o EE S o S O S N SN B BN BEE BEE EEE BEE BEE EEE EEE EEE M B

@~ 0

Summary

Access rates fall sharply with distance

50x gap between memory and network!

50 GB/s
0.3 GB/s

— T

| ocal disks Different
Racks

Must be mindful of this hierarchy when
developing parallel algorithms!

Distributed ML.:
Communication Principles

UCLA
€databricks

Communication Hierarchy

Access rates fall sharply with distance
® Parallelism makes computation fast
® Network makes communication slow

50 GB/s
0.3 GB/s
| ocal disks Different
Racks

Must be mindful of this hierarchy when
developing parallel algorithms!

0N

{

ICa

duces commun

iNng in memory re

{

1S

Pers

® [specially for iterative computation (gradient descent)

0
B
e
At
ey
ARG

CPU

® [Xxpensive hardware, eventually hit a wall
Disk

Scale-up (powerful multicore machine)
® No network communication

Persisting In memory reduces communication
® [specially for iterative computation (gradient descent)

Scale-out (distributed, e.g., cloud-based)

® Need to deal with network communication
e (Commodity hardware, scales to massive problems

Network

Persisting In memory reduces communication
® [specially for iterative computation (gradient descent)

Scale-out (distributed, e.g., cloud-based)

® Need to deal with network communication
e (Commodity hardware, scales to massive problems

train.cache() <« Persist training data across iterations
for i in range(numlters):

alpha_1 = alpha / (n *x np.sqrt(i+1))
gradient = train.map(lambda 1lp: gradientSummand(w, Llp)).sum()
w -= alpha_i1 * gradient

Q: How should we leverage distributed computing while
mitigating network communication”

First Observation: We need to store and potentially
communicate Data, Model and Intermediate objects
® A:. Keep large objects local

Example: Linear regression, big n and small d

® Solve via closed form (not iterative!)
e Communicate O(d?) intermediate data

workers:

map: I- I-

l
reduce: (Z I-) 1

-§ WOrkers: - - -

map: (wx¥) —yNx) (wxW) — y)xl) (w T xU) — yU))x0)
reduce: S (wi X — y0)x0)

J=1

Example: Linear regression, big n and big d

® (Gradient descent, communicate w;
® O(d) communication OK for fairly large d

e Compute locally on data (Data Parallel)

¥ workers - - -

map. wa@ y)x) WTXm_ y9)x V) (WTXm y9)x)

~. | 7
(

WiTX(j) _ y(j))x(j)

reduce:

Example: Hyperparameter tuning for ridge regression
with small » and small d

® Data is small, so can communicate It

o ‘Model’ is collection of regression models corresponding
to different hyperparameters

® [rain each model locally (Model Parallel)

Example: Linear regression, big n and huge d

® Gradient descent

® O(d) communication slow with hundreds of millions parameters
e Distribute data and model (Data and Model Parallel)

e Often rely on sparsity to reduce communication

Q: How should we leverage distributed computing while
mitigating network communication”

First Observation: We need to store and potentially
communicate Data, Model and Intermediate objects
® A:. Keep large objects local

Second Observation: ML methods are typically iterative
® A: Reduce # Iterations

Distributed iterative algorithms must compute and communicate
e |n Bulk Synchronous Parallel (BSP) systems, e.g., Apache Spark, we
strictly alternate between the two

Distributed Computing Properties
® Parallelism makes computation fast
® Network makes communication slow

|[dea: Design algorithms that compute more, communicate less
® [o more computation at each iteration
® Reduce total number of iterations

Extreme: Divide-and-conquer

® ully process each partition locally, communicate final result
® Single iteration; minimal communication

® Approximate results

w = train.mapPartitions(localLinearRegression)
.reduce(combineLocalRegressionResults)

for i in range(numlters):
alpha_i = alpha / (n * np.sqrt(i+1l))
gradient = train.map(lambda lp: gradientSummand(w, 1lp)).sum()
w —= alpha_i1 * gradient

L ess extreme: Mini-batch
® Do more work locally than gradient descent before communicating

® [Exact solution, but diminishing returns with larger batch sizes

for i in range(fewerIters):
update = train.mapPartitions(doSomelLocalGradientUpdates)

.reduce(combinelLocalUpdates)
w += update

for i in range(numlters):
alpha_i = alpha / (n * np.sqrt(i+1l))
gradient = train.map(lambda lp: gradientSummand(w, 1lp)).sum()
w —= alpha_i1 * gradient

Throughput: How many bytes per second can be read
Latency: Cost to send message (independent of size)

Latency

Memory We can amortize latency!

Hard Disk ® Send larger messages

® [Batch thelr communication

e [.0., Train multiple models together

Network (same datacenter)

Network (US to Europe)

Lab Preview

UCLA
€databricks

training | @ oo O
set = o o modael J

full S/
dataset | mepp [— =z / | \ o S
validation |- _g, - new enity
set ::::::::::::S /
IIIIIIIIIIII 1

testset | =P o S =P accuracy prediction

Obtain Raw Data

4
Split Data

4

Feature Extraction

d

{)
{ J
{)
(Supenised Learing |
{)
(]

Goal: Predict song’s release year from audio features

—p

4

Evaluation

d
Predict

raining | _ B
set =» oo c =% | model

! full | e —
E da’[ase’[_L’ ||||||||||||]
, i I Al COCIIIrrrrrr1T11] Y A A ' I I N |
° validation | - _ SEEEEEeE S new enity
* set ::::::::::::S /
' |||||||||||| |

IIIIIIIIIIIII

testset | == 0o == gccuracy prediction

({ Obtaln Raw Data
\..a_.. = ,.
Split Data

Raw Data: Millionsong Dataset from UCI ML Repository L
Feature Extraction

(

® EXxplore features { I

® GShift labels so that they start at O (for interpretabllity) |_Supenvised Learning
—{
{

—p

dL
® \/isualize data

Evaluation

d
Predict

— — — — —____J ’~'*' - J ¢

training | | @ oo O

SO | = [model

full | BRI
dataset " e e e e e =
, I A | §f 2 OOIIr1rrrrrii Y A A ' A N A O
Va"datt'on by T new entity
- |__se B EE R /
" X I I |

IIIIIIIIIIIII

testset | | o g == gocuracy prediction

-—*[Feature Extraction

J
J
J

4
Supervised Learning J
J
J

{
.|
-—-»-[Evaluation
{

d
Predict

training o S |
Se-t |||||||||||| O ‘ mOdel

full ', A B
dataset 1 oo =i
; ' Vo o N EE N S H N I I A R Y A [W N N I N B B]
| | validation | _y, oeeememn e | now entity
oY= N g O |
- 1 LI ITTTTTTTT] [,
" |||||||||||| /

test set S © =% accuracy prediction

Feature Extraction:
® [nitially use raw features
® Subsequently compare with quadratic features

training
set

full
dataset | = [- lidation T hewentty
set /
test set —> % = accuracy prediction

Obtain Raw Data

4

Split Data

- - - 4

Supervised Learning: Least Squares Regression N

® [irst Implement gradient descent from scratch
® [hen use MLIib implementation
® \/isualize performance by iteration

el | = | | model
ul / |
dataset N e o e o
—> Va“g:tt'on — 5N N __J new entity

— "4

test set —> % = accuracy prediction
Obtain Raw Data
4
Evaluation (Part 1): Hyperparameter tuning Sp“ifata

® Use grid search to find good values for regularization
and step size hyperparameters

® [valuate using RMSE
® \/isualize grid search

training
set model
full
dataset .
= [Jalidation T hewentty
set /
test set prediction

Evaluation (Part 2): Evaluate final model
® [valuate using RMSE

e (Compare to baseline model that returns
average song year in training data

—p

training | @ oo O

o —>::::::::::::%—>£ model J

full EECErrro © \
dataset | wepp [. | = S o NTTTTTTTY

validation e e D!
test set =) o O == accuracy prediction J

R i T e 4 = HorERn =

set | 7 CCCrrrrrTtom]

Obtain Raw Data

4
Split Data

4

Feature Extraction

d

—p

Predict: Final model could be used to predict song
year for new songs (we won't do this though)

4

Evaluation

| Predict

t— J; — — — —

{
{
{
| Supervised Learning
{
(

MLIib and Pipelines

Spark's Machine Learning Library (MLIib)

e Consists of common learning algorithms and utilities
Classification

= Regression

Clustering

Collaborative filtering

= Dimensionality reduction

e Two packages:
= spark.mllib

= spark.ml

ML Transtormer

e A Transformeris a class which can transform one DataFrame
into another DataFrame

e ATransformerimplements transform()

e Examples
= HashingTF
= | ogisticRegressionModel

m Binarizer

ML: Estimator

e An Estimatoris a class which can take a DataFrame and
produce a Transformer

e An Estimatorimplements T1t ()

e Examples
= | ogisticRegression
= StandardScaler

= Pipeline

ML: Pipelines

A Pipelineis an estimator that contains stages representing a
resusable workflow. Pipeline stages can be either estimators or
transformers.

Pipeline

Transformer Transformer Estimator

Pipeline

Binarizer VectorAssembler LinearRegression

ML: PipelineModel

Train | _fit Pipeline | mmmmp| PipelineModel
Data

PipelineModel

_> VectorAssembler [===p | LinearRegressionModel
Test Lransform | o clinemodel _,‘ Predictions

ML: Standard Scaler Pipeline

Pipeline

StandardScaler

Train fit Pipe|ine — | PipelineModel
Data

PipelineModel

StandardScalerMode! | === | LinearRegressionModel

transform { . ..
-I[_)eastta —p | PipelineModel —;‘ Predictions

