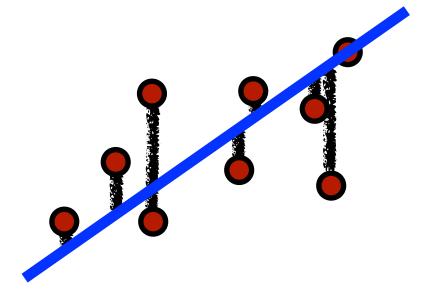
Linear Regression

Regression

Goal: Learn a mapping from observations (features) to

Example: Height, Gender, Weight \rightarrow Shoe Size

- Audio features \rightarrow Song year
- Processes, memory \rightarrow Power consumption
- Historical financials \rightarrow Future stock price
- Many more



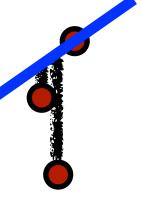
- continuous labels given a training set (supervised learning)

We assume a *linear* mapping between features and label:

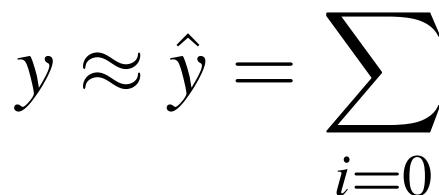
Example: Predicting shoe size from height, gender, and weight

For each observation we have a feature vector, \mathbf{x} , and label, y $\mathbf{x}^{\top} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$

- $y \approx w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$



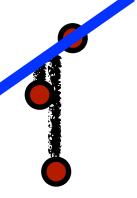
We can augment the feature vector to incorporate offset:



Example: Predicting shoe size from height, gender, and weight

 $\mathbf{x}^{\top} = \begin{bmatrix} 1 & x_1 & x_2 & x_3 \end{bmatrix}$

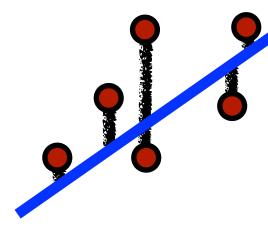
We can then rewrite this linear mapping as scalar product: 3 $y \approx \hat{y} = \sum w_i x_i = \mathbf{w}^{\top} \mathbf{x}$



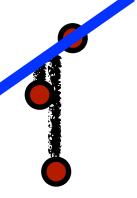
Why a Linear Mapping?

Often works well in practice

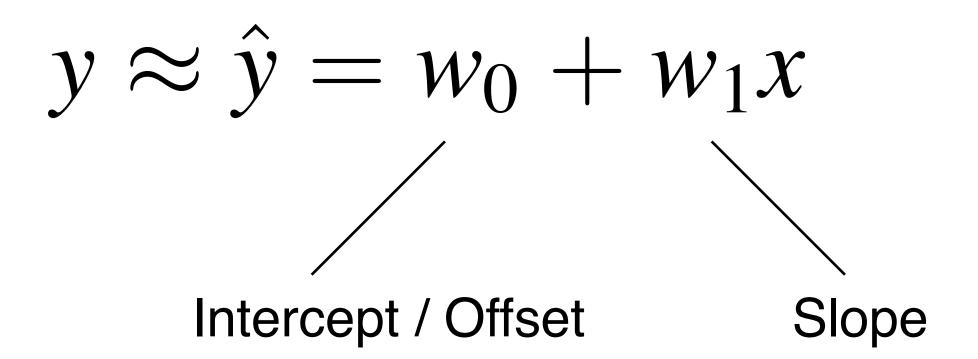
Can introduce complexity via feature extraction



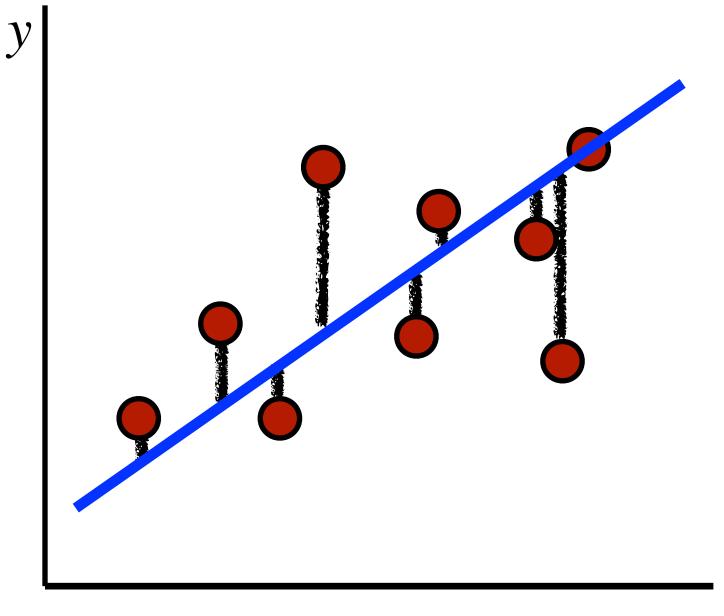
Simple



Goal: find the line of best fit x coordinate: features y coordinate: labels



1D Example



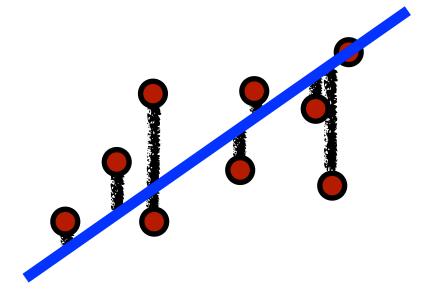
 \mathcal{X}

Evaluating Predictions

- Can measure 'closeness' between label and prediction • Shoe size: better to be off by one size than 5 sizes • Song year prediction: better to be off by a year than by 20 years

What is an appropriate evaluation metric or 'loss' function?

- Absolute loss: $|y \hat{y}|$
- Squared loss: $(y \hat{y})^2$ Has nice mathematical properties



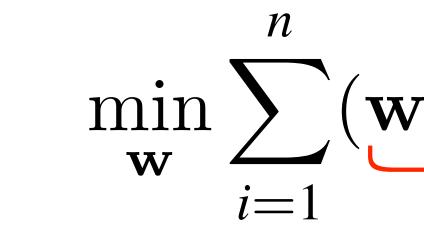
How Can We Learn Model (w)?

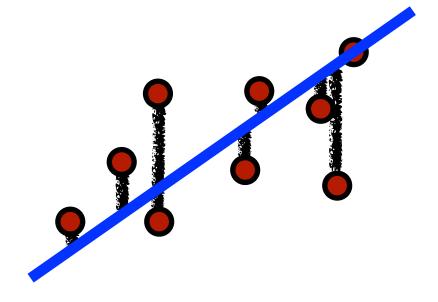
Assume we have *n* training points, where $\mathbf{x}^{(i)}$ denotes the *i*th point

Recall two earlier points:

- Linear assumption: $\hat{y} = \mathbf{w}^\top \mathbf{x}$
- We use squared loss: $(y \hat{y})^2$

Idea: Find \mathbf{w} that minimizes squared loss over training points:





x 2

$$\mathbf{x}^{\top}\mathbf{x}^{(i)} - y^{(i)})^2$$

$$\hat{y}^{(i)}$$

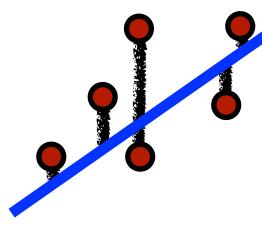
• $\mathbf{X} \in \mathbb{R}^{n \times d}$: matrix storing points • $\mathbf{y} \in \mathbb{R}^n$: real-valued labels

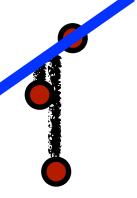
• $\mathbf{\hat{y}} \in \mathbb{R}^{n}$: predicted labels, where $\mathbf{\hat{y}} = \mathbf{X}\mathbf{w}$ • $\mathbf{w} \in \mathbb{R}^d$: regression parameters / model to learn

Equivalent $\min_{\mathbf{w}} \sum_{i=1}^{\infty} (\mathbf{w}^{\top} \mathbf{x}^{(i)} - y^{(i)})^2$ by definition of Euclidean norm

- Given *n* training points with *d* features, we define:

Least Squares Regression: Learn mapping (w) from features to labels that minimizes residual sum of squares: $\min ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$





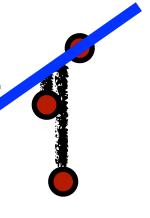
Find solution by setting derivative to zero
1D:
$$f(w) = ||w\mathbf{x} - \mathbf{y}||_2^2 = \sum_{i=1}^n (wx^{(i)} - y^{(i)})^2$$

 $\frac{df}{dw}(w) = 2\sum_{i=1}^n x^{(i)}(wx^{(i)} - y^{(i)}) = 0 \iff w\mathbf{x}^\top \mathbf{x} - \mathbf{x}^\top \mathbf{y} = 0$
 $\underbrace{w\mathbf{x}^\top \mathbf{x} - \mathbf{x}^\top \mathbf{y}}_{w\mathbf{x}^\top \mathbf{x} - \mathbf{x}^\top \mathbf{y}} \iff w = (\mathbf{x}^\top \mathbf{x})^{-1} \mathbf{x}^\top \mathbf{y}$

\mathbf{W}

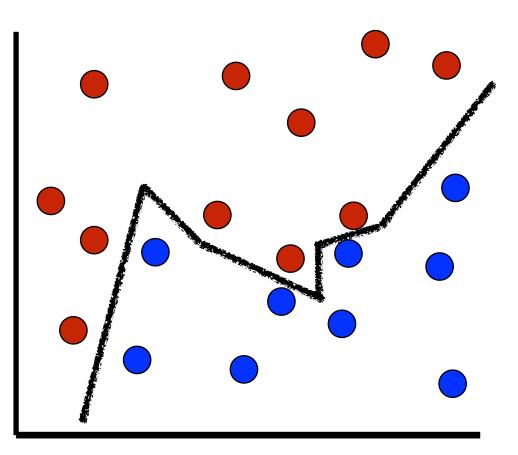
Closed form solution: $\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ (if inverse exists)

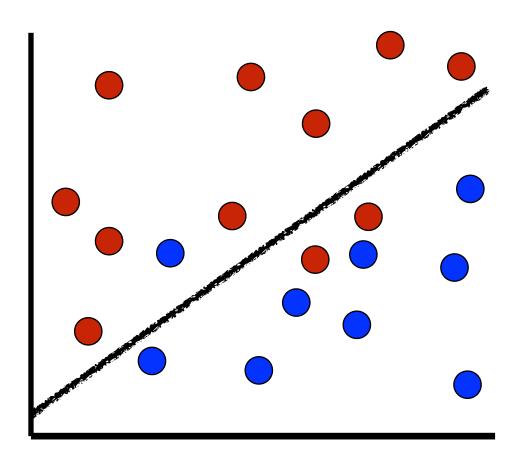
Least Squares Regression: Learn mapping (w) from features to labels that minimizes residual sum of squares: $\min ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$



Overfitting and Generalization

- We want good predictions on new data, i.e., 'generalization'
- Least squares regression minimizes training error, and could overfit • Simpler models are more likely to generalize (Occam's razor)
- Can we change the problem to penalize for model complexity? Intuitively, models with smaller weights are simpler

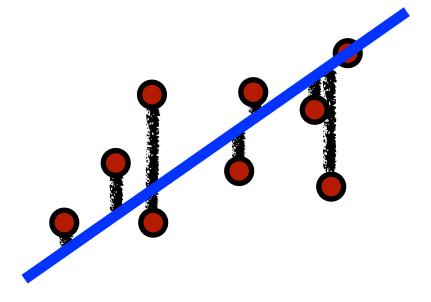




• $\mathbf{X} \in \mathbb{R}^{n \times d}$: matrix storing points • $\mathbf{y} \in \mathbb{R}^n$: real-valued labels • $\hat{\mathbf{y}} \in \mathbb{R}^n$: predicted labels, where $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$

Closed-form solution: $\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_d)^{-1}\mathbf{X}^{\top}\mathbf{y}$

- Given *n* training points with *d* features, we define:

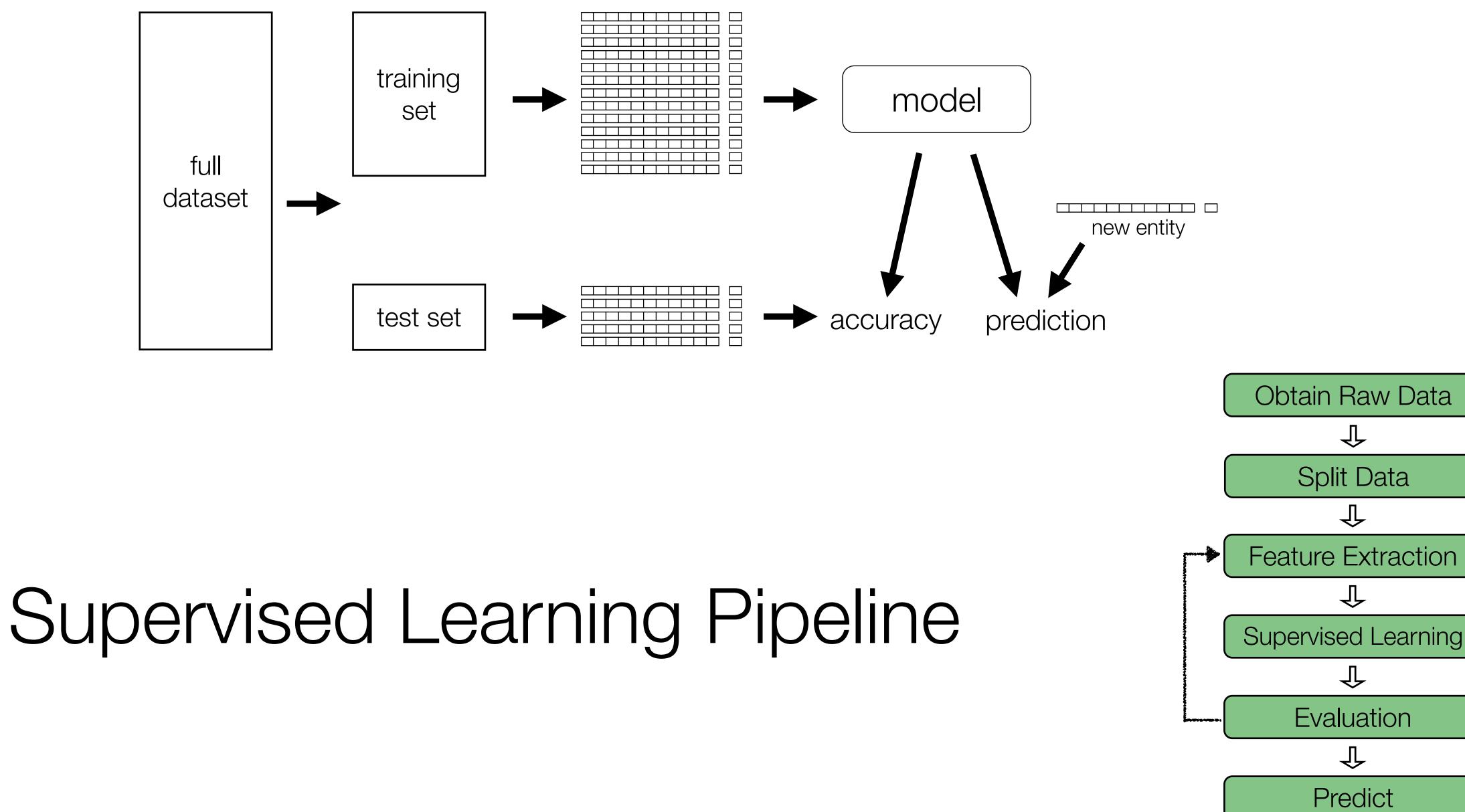


- $\mathbf{w} \in \mathbb{R}^d$: regression parameters / model to learn

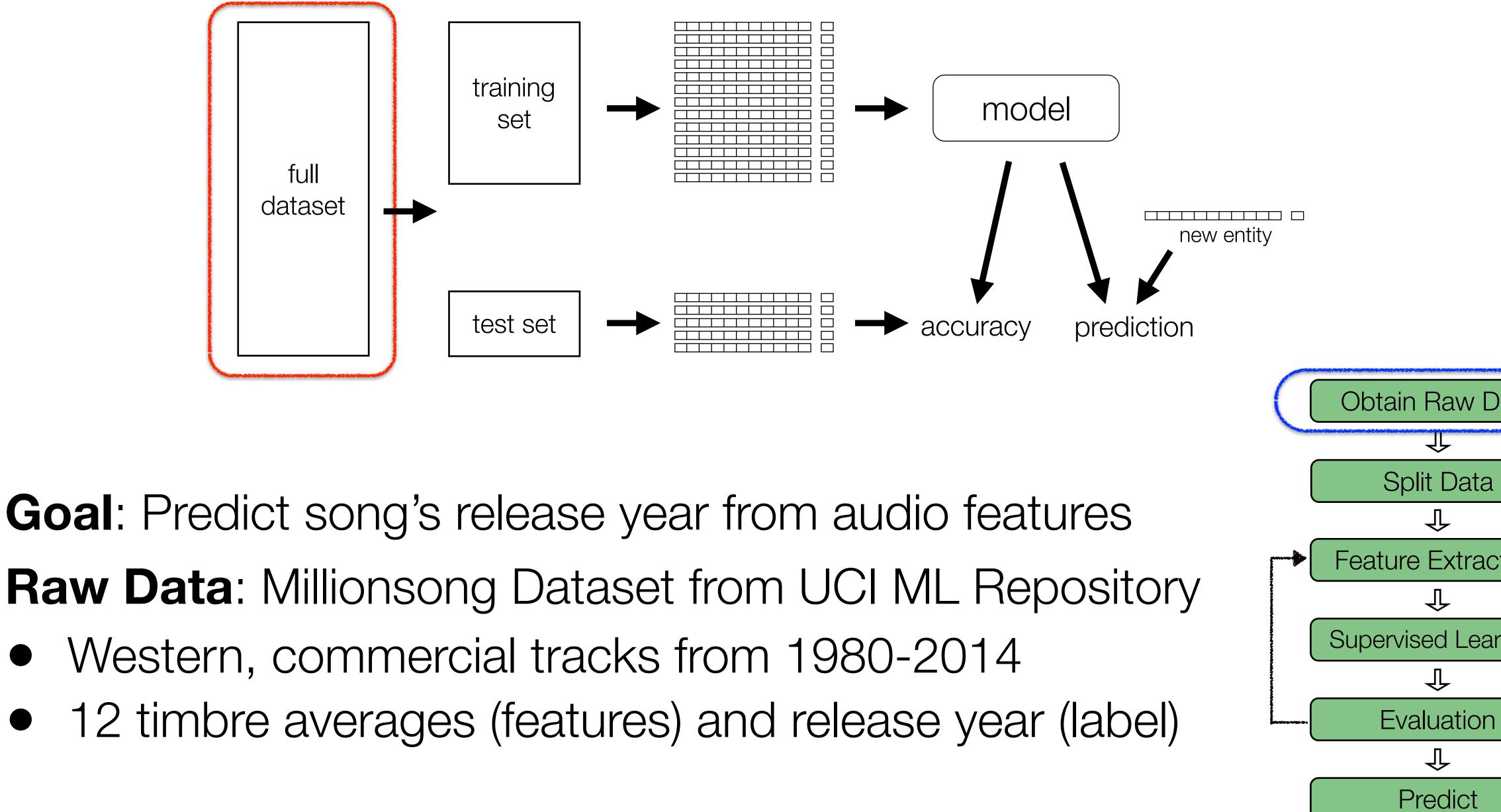
Ridge Regression: Learn mapping (w) that minimizes residual sum of squares along with a regularization term: Training Error Model Complexity $\min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 + \lambda ||\mathbf{w}||_2^2$

free parameter trades off between training error and model complexity

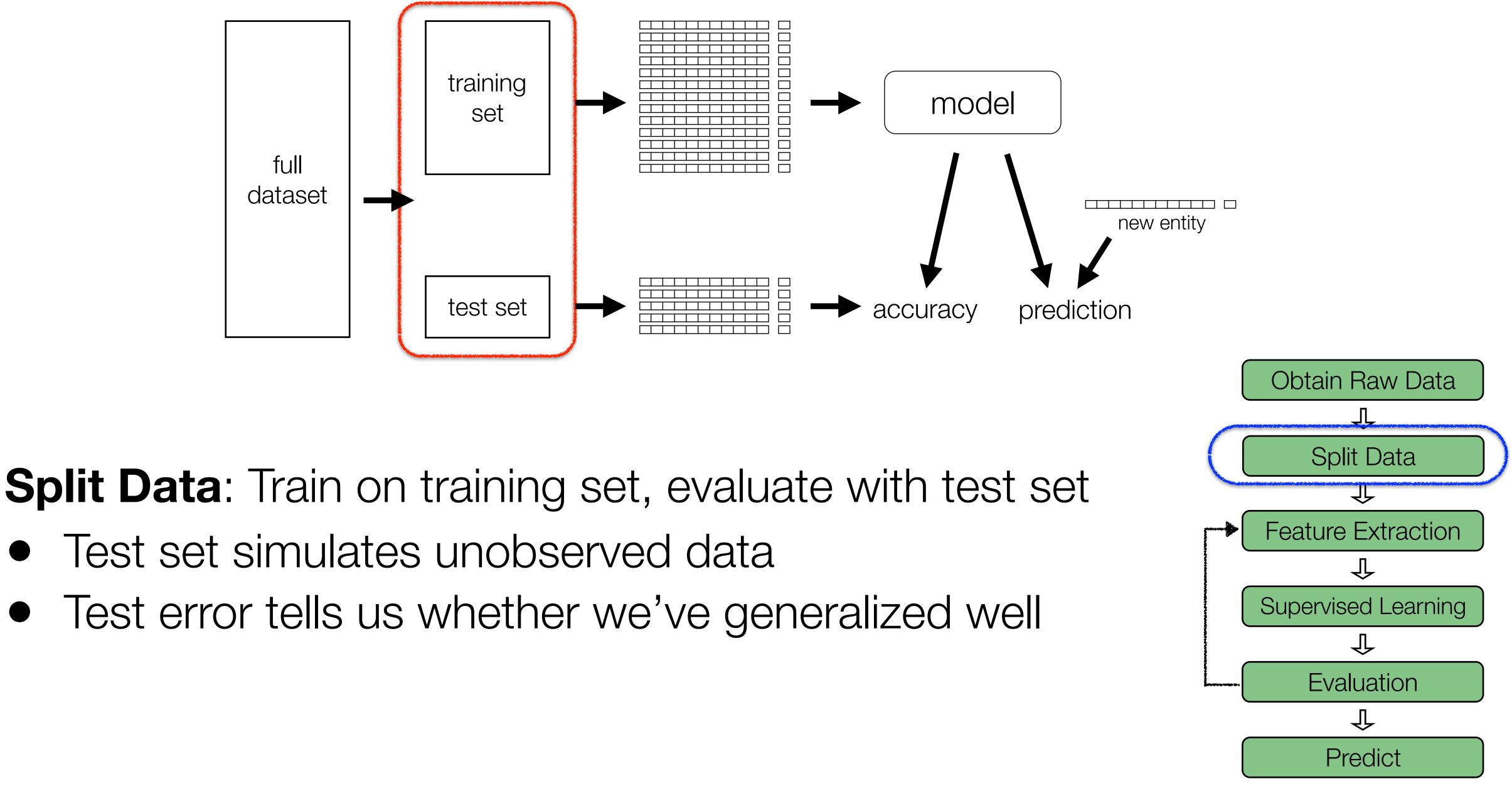
Millionsong Regression Pipeline



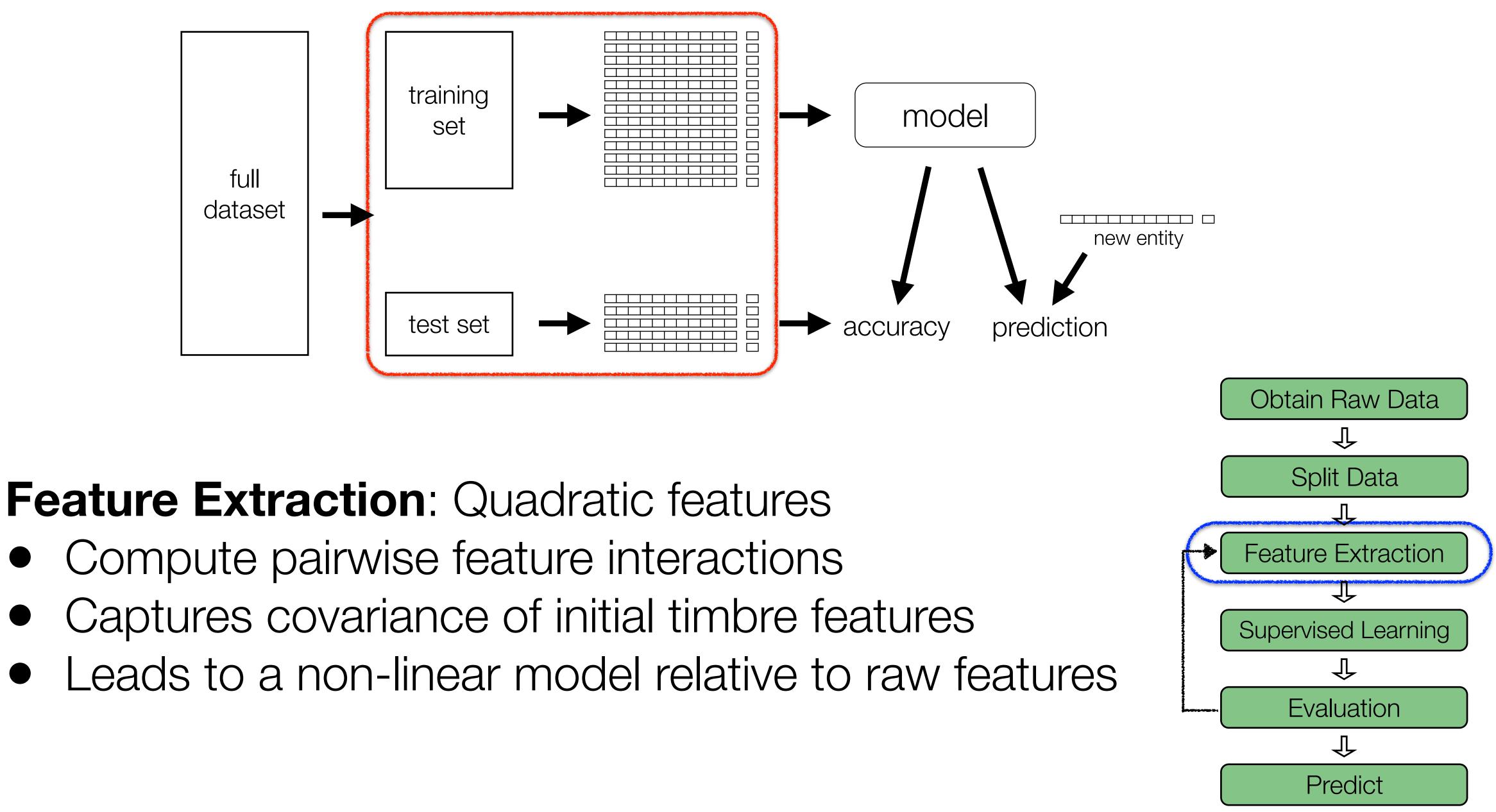
vala	J
tion	
rning	



)ata	J)
tion	
rning	
	_



- Test set simulates unobserved data



$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^\top \implies \Phi(z)$$
$$\mathbf{z} = \begin{bmatrix} z_1 & z_2 \end{bmatrix}^\top \implies \Phi(z)$$

More succinctly:

$$\Phi'(\mathbf{x}) = \begin{bmatrix} x_1^2 & \sqrt{2}x_1x_2 & x_2^2 \end{bmatrix}^{-1}$$

Equivalent inner products:

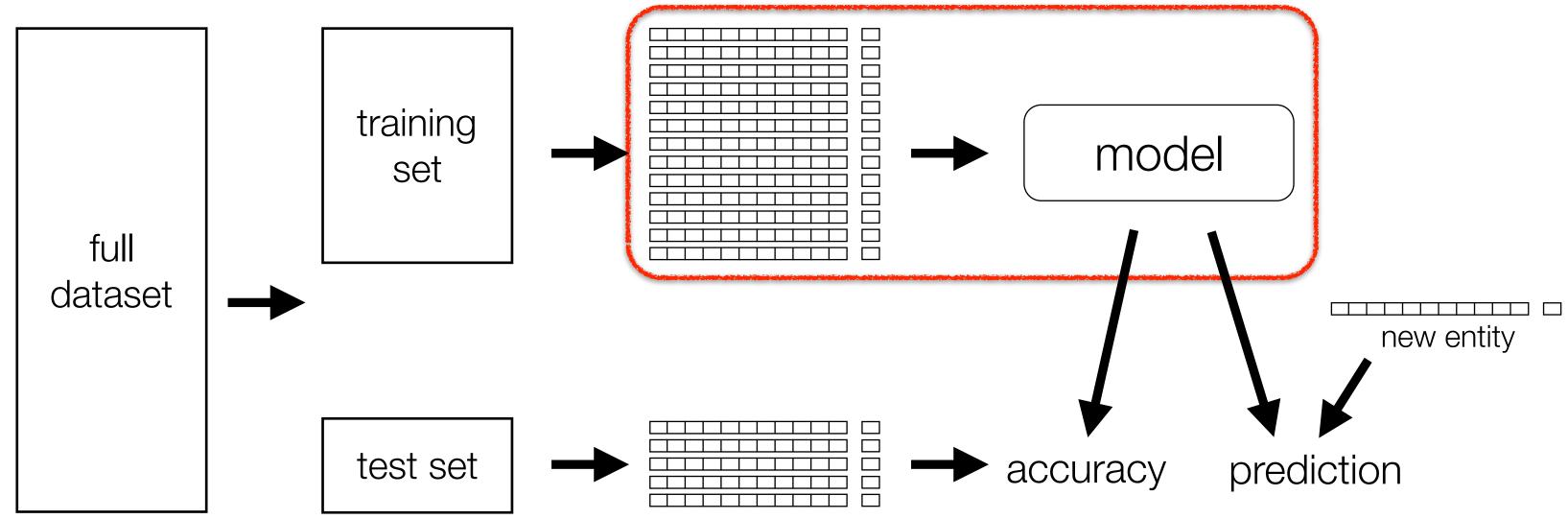
$$\Phi(\mathbf{x})^{\top} \Phi(\mathbf{z}) = \sum x_1^2 z_1^2 + 2x$$

Given 2 dimensional data, quadratic features are:

 $(\mathbf{x}) = \begin{bmatrix} x_1^2 & x_1 x_2 & x_2 x_1 & x_2^2 \end{bmatrix}^{\top}$ $(\mathbf{z}) = \begin{bmatrix} z_1^2 & z_1 z_2 & z_2 z_1 & z_2^2 \end{bmatrix}^{\top}$

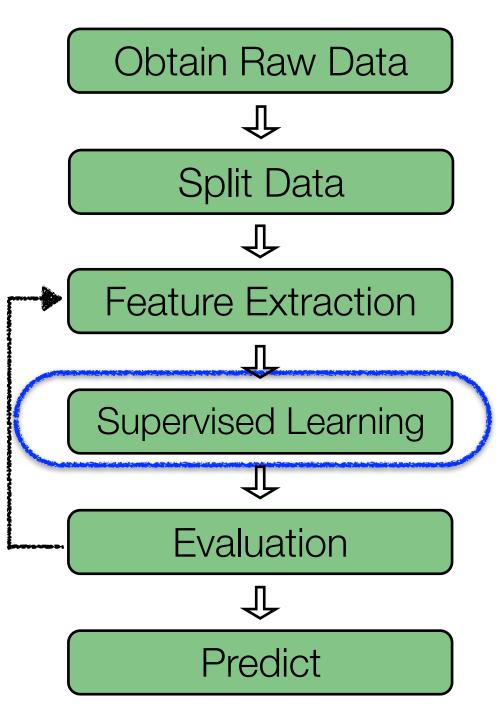
 $\top \quad \Phi'(\mathbf{z}) = \begin{bmatrix} z_1^2 & \sqrt{2}z_1z_2 & z_2^2 \end{bmatrix}^{\top}$

 $x_1 x_2 z_1 z_2 + x_2^2 z_2^2 = \Phi'(\mathbf{x}) \Phi'(\mathbf{z})$



Supervised Learning: Least Squares Regression • Learn a mapping from entities to continuous

- labels given a training set
- Audio features → Song year

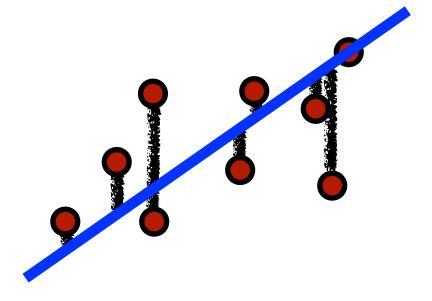


• $\mathbf{X} \in \mathbb{R}^{n \times d}$: matrix storing points • $\mathbf{y} \in \mathbb{R}^n$: real-valued labels • $\mathbf{\hat{y}} \in \mathbb{R}^n$: predicted labels, where $\mathbf{\hat{y}} = \mathbf{X}\mathbf{w}$

W

Closed-form solution:

- Given *n* training points with *d* features, we define:



- $\mathbf{w} \in \mathbb{R}^d$: regression parameters / model to learn

Ridge Regression: Learn mapping (w) that minimizes residual sum of squares along with a regularization term: Training Error Model Complexity

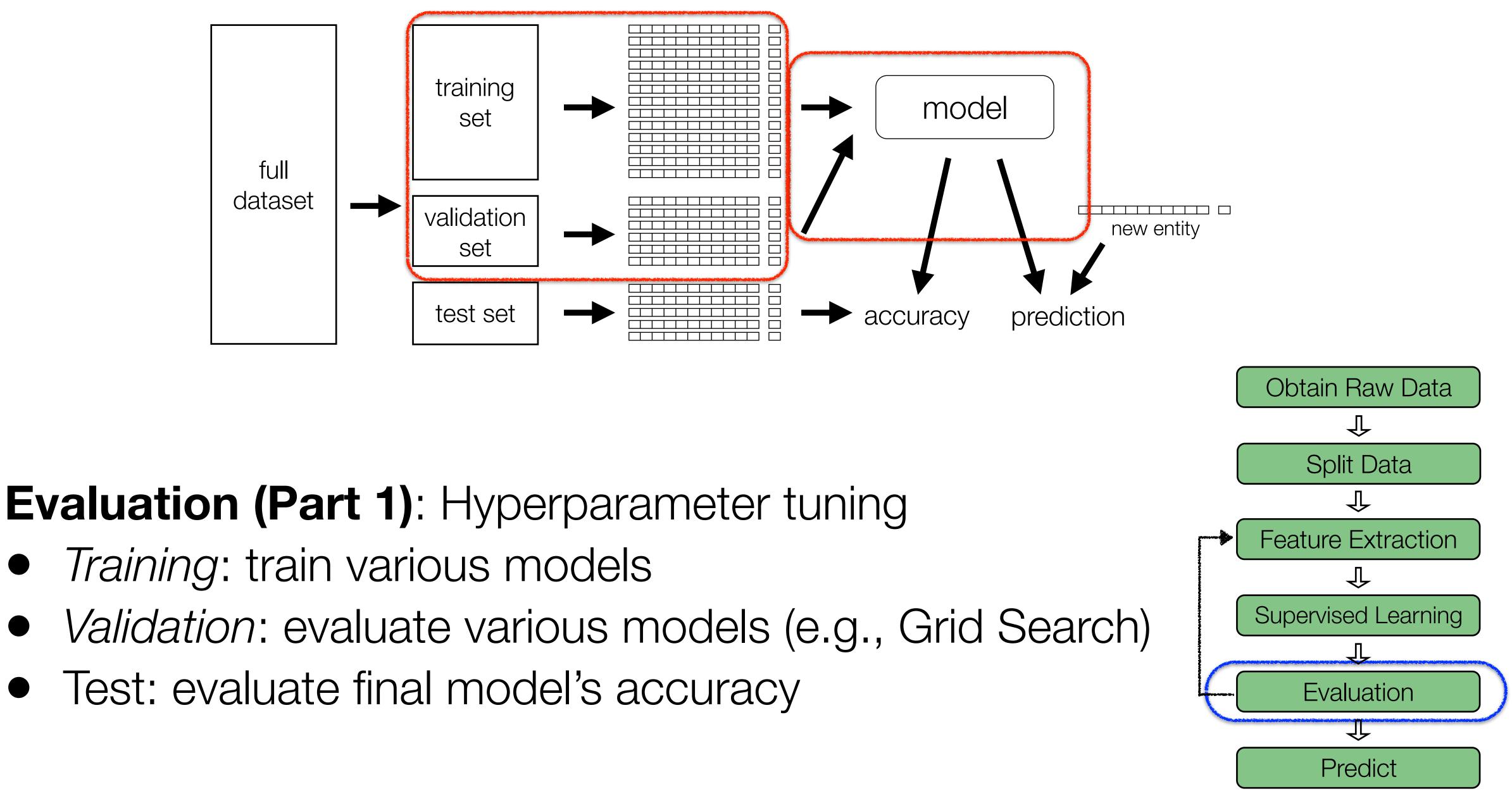
 $\min_{\mathbf{W}} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 + \lambda ||\mathbf{w}||_2^2$

$$\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}_d)^{-1}\mathbf{X}^{\top}\mathbf{y}$$

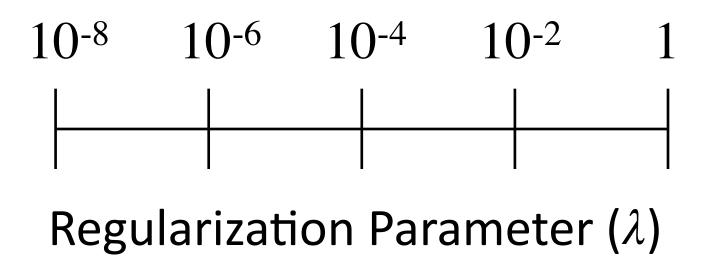
- free parameter trades off between training ... error and model complexity
- How do we choose a good value for this free parameter? Most methods have free parameters / 'hyperparameters' to tune
- First thought: Search over multiple values, evaluate each on test set • But, goal of test set is to simulate unobserved data
- We may overfit if we use it to choose hyperparameters

Ridge Regression: Learn mapping (w) that minimizes residual sum of squares along with a regularization term: Training Error Model Complexity $\min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 + \lambda ||\mathbf{w}||_2^2$

Second thought: Create another hold out dataset for this search

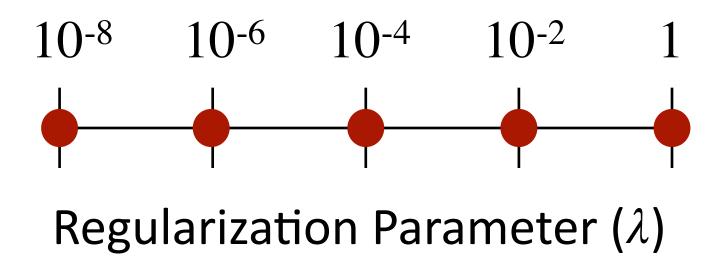


- *Training*: train various models
- Test: evaluate final model's accuracy

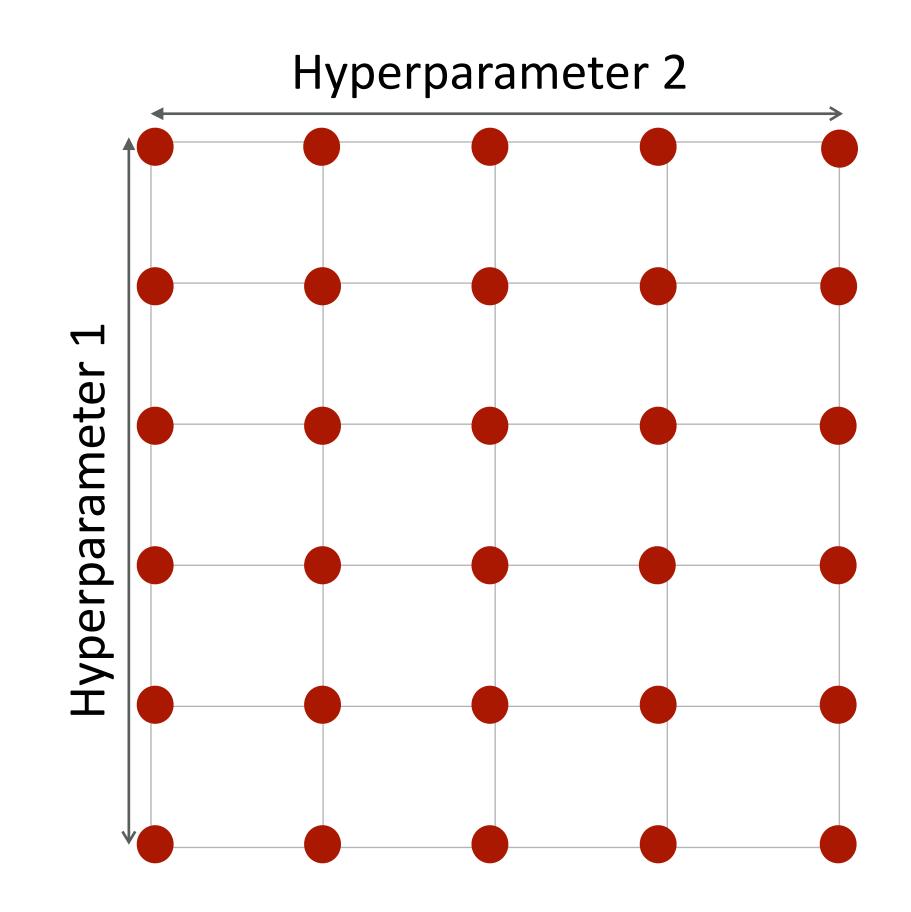


- Define and discretize search space (linear or log scale)
- Evaluate points via validation error

Grid Search: Exhaustively search through hyperparameter space



- Define and discretize search space (linear or log scale)
- Evaluate points via validation error



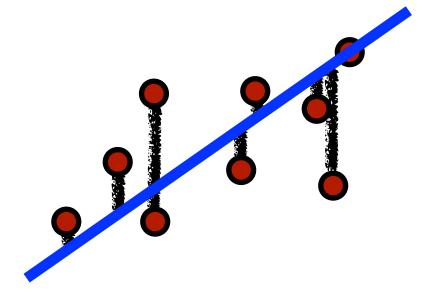
Grid Search: Exhaustively search through hyperparameter space

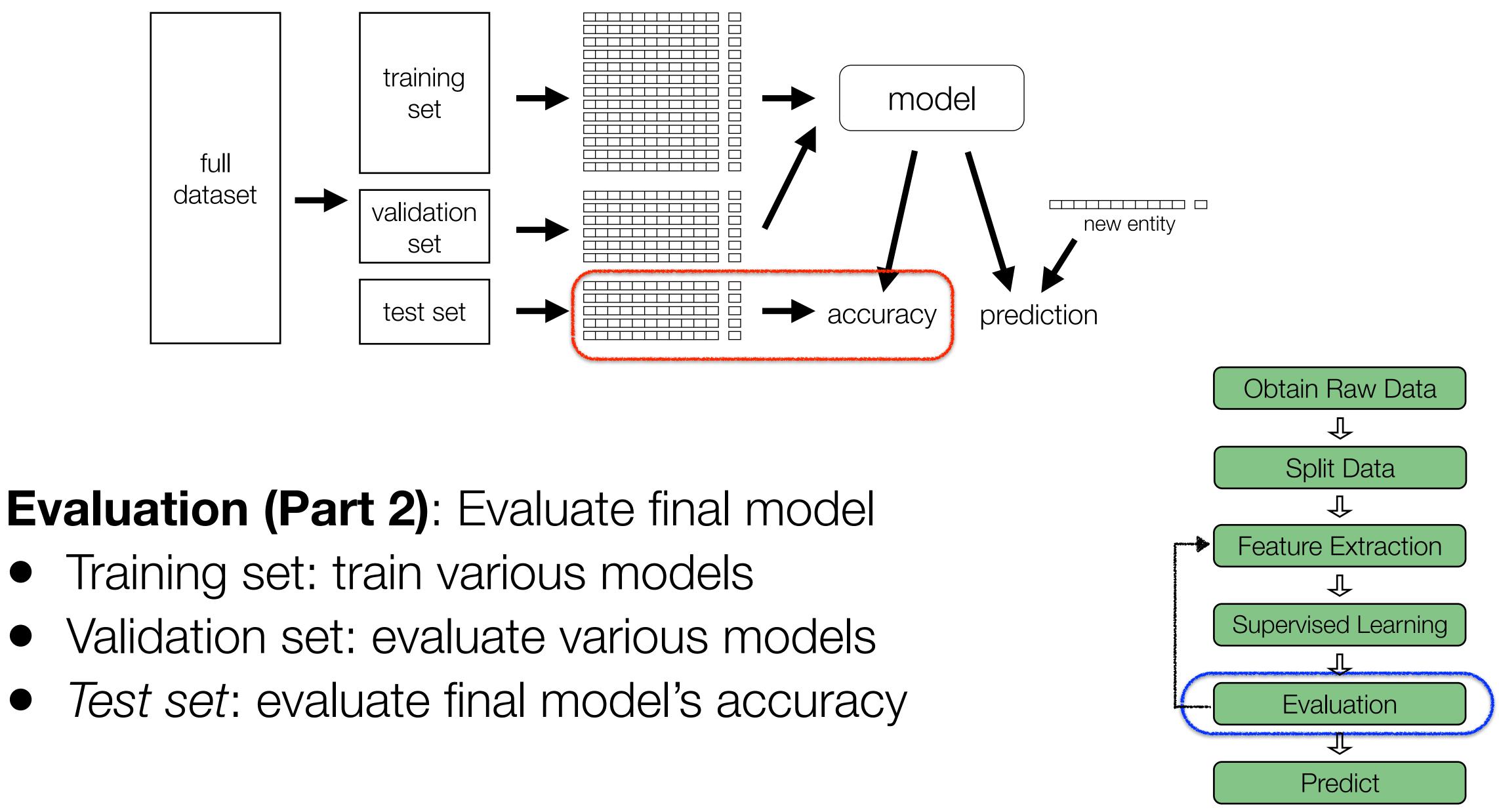
Evaluating Predictions

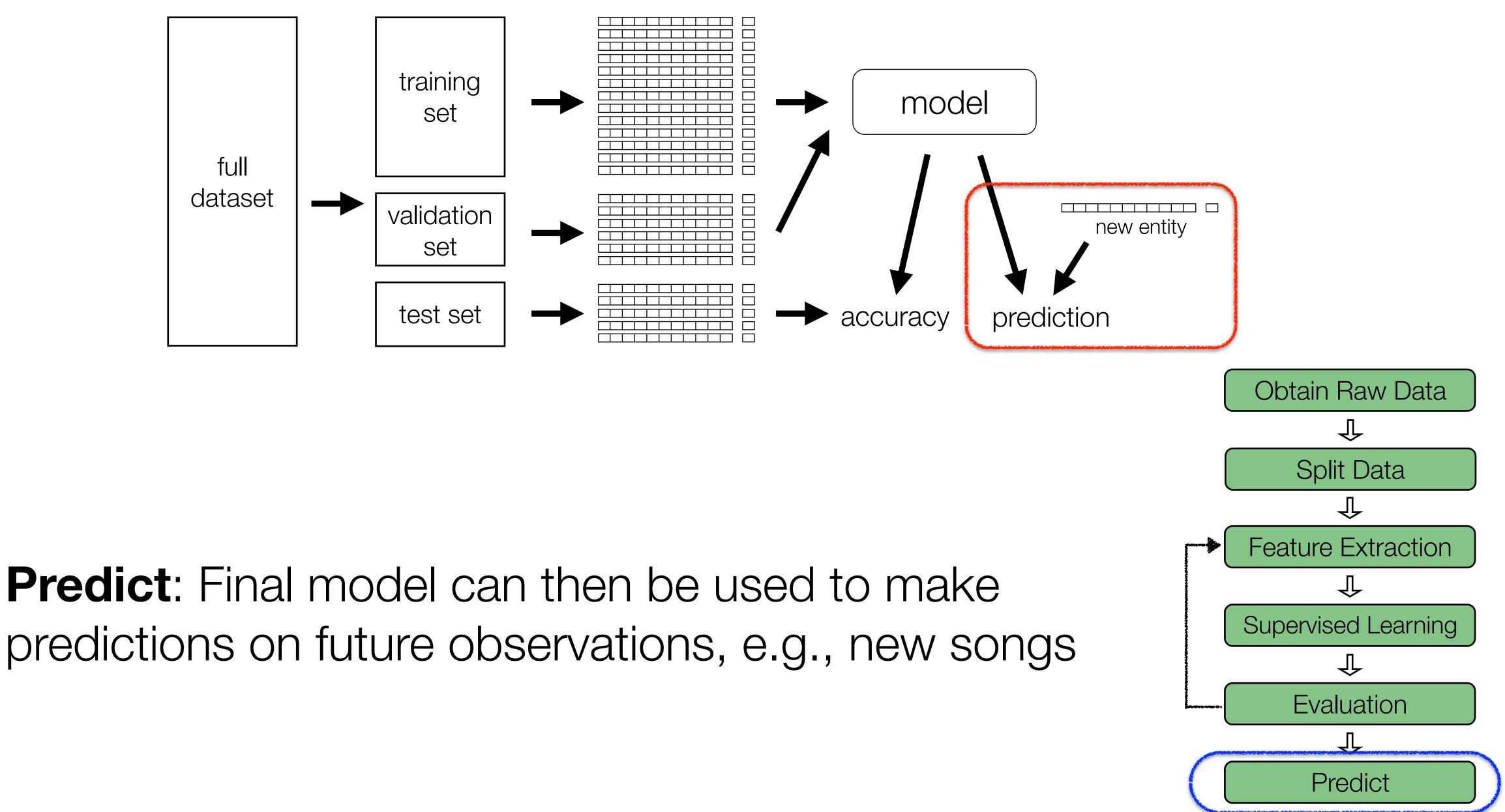
- How can we compare labels and predictions for *n* validation points?
- Least squares optimization involves squared loss, $(y \hat{y})^2$, so it seems reasonable to use mean squared error (**MSE**):

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (\hat{y}^{(i)} - y^{(i)})^2$$

- But MSE's unit of measurement is square of quantity being measured, e.g., "squared years" for song prediction
- More natural to use root-mean-square error (**RMSE**), i.e., $\sqrt{\text{MSE}}$

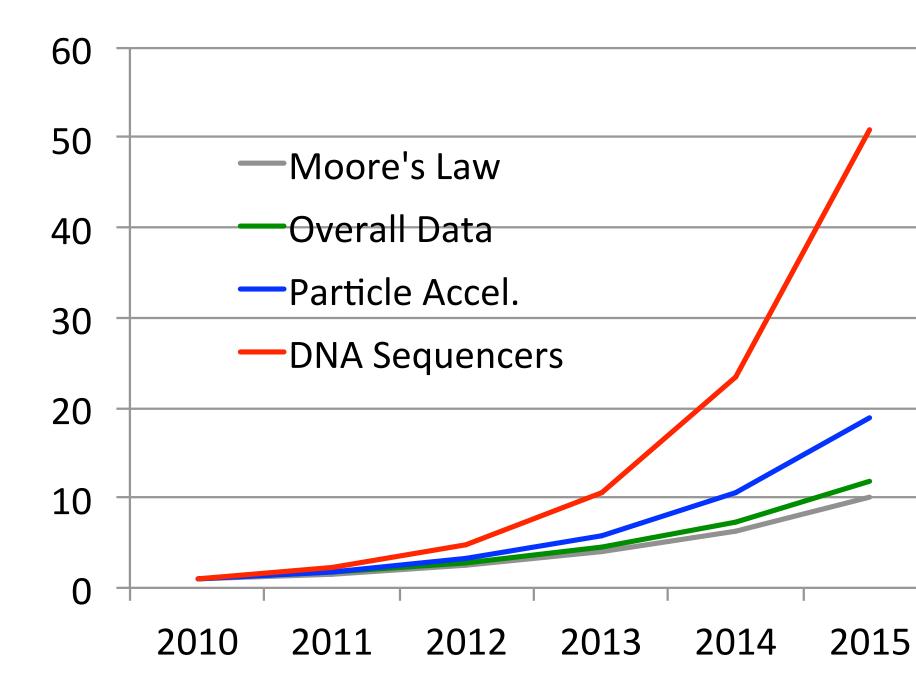






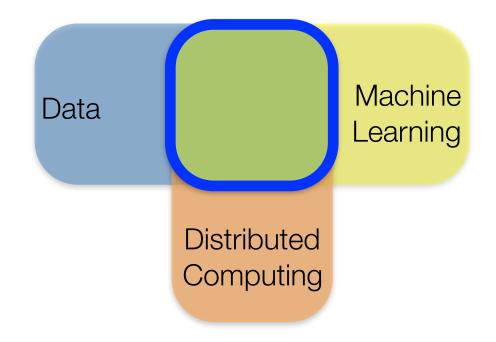
Distributed ML: Computation and Storage

Challenge: Scalability



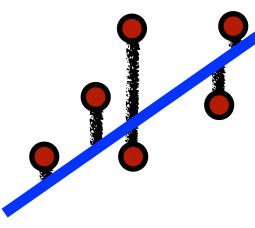
Classic ML techniques are not always suitable for modern datasets

Data Grows Faster than Moore's Law [IDC report, Kathy Yelick, LBNL]



min

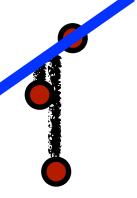
- How do we solve this computationally? Computational profile similar for Ridge Regression



Least Squares Regression: Learn mapping (w) from features to labels that minimizes residual sum of squares:

$$|{f X}{f w} - {f y}||_2^2$$

Closed form solution: $\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ (if inverse exists)



Computing Closed Form Solution

Computational bottlenecks:

- Matrix multiply of $\mathbf{X}^{\top}\mathbf{X}$: O(*nd*²) operations • Matrix inverse: $O(d^3)$ operations

Other methods (Cholesky, QR, SVD) have same complexity

 $\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ **Computation**: $O(nd^2 + d^3)$ operations

Consider number of arithmetic operations $(+, -, \times, /)$

Storage Requirements

Storage: $O(nd + d^2)$ floats

Consider storing values as floats (8 bytes)

Storage bottlenecks:

- $\mathbf{X}^{\top}\mathbf{X}$ and its inverse: $O(d^2)$ floats
- \mathbf{X} : O(nd) floats

 $\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ **Computation**: $O(nd^2 + d^3)$ operations

Big *n* and Small *d*

Storage: $O(nd + d^2)$ floats

single machine

Can distribute storage and computation! • Store data points (rows of \mathbf{X}) across machines • Compute $\mathbf{X}^{\top}\mathbf{X}$ as a sum of outer products

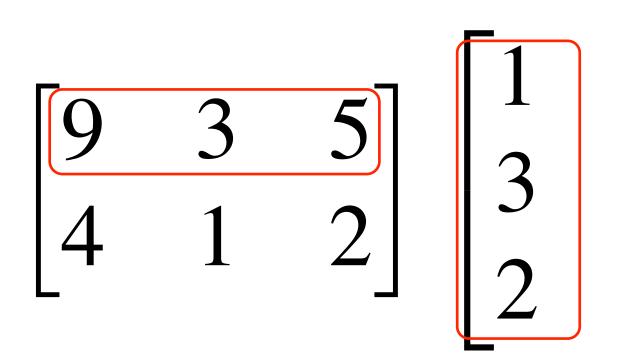
 $\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ **Computation**: $O(nd^2 + d^3)$ operations

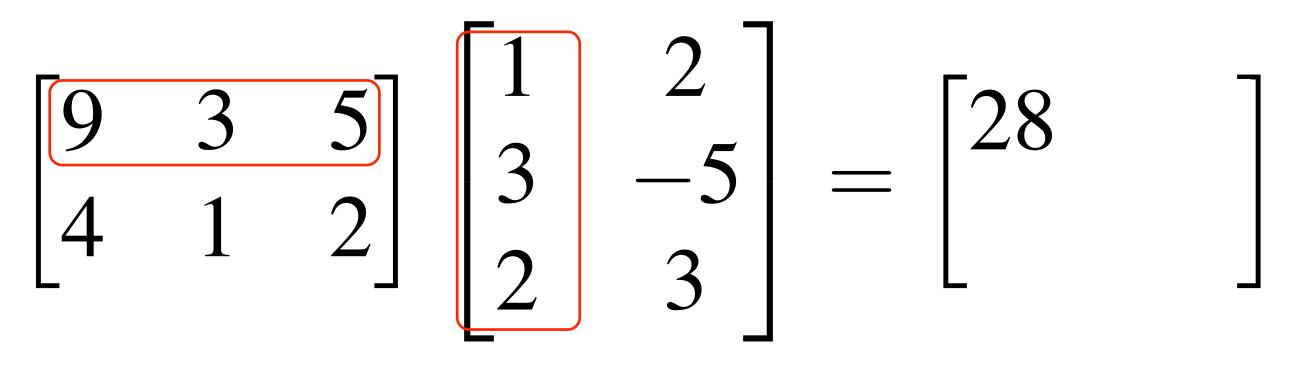
Assume $O(d^3)$ computation and $O(d^2)$ storage feasible on

Storing X and computing $\mathbf{X}^{\top}\mathbf{X}$ are the bottlenecks

Matrix Multiplication via Inner Products

Each entry of output matrix is result of inner product of inputs matrices

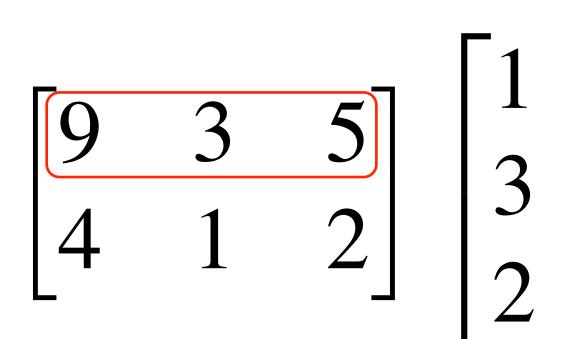


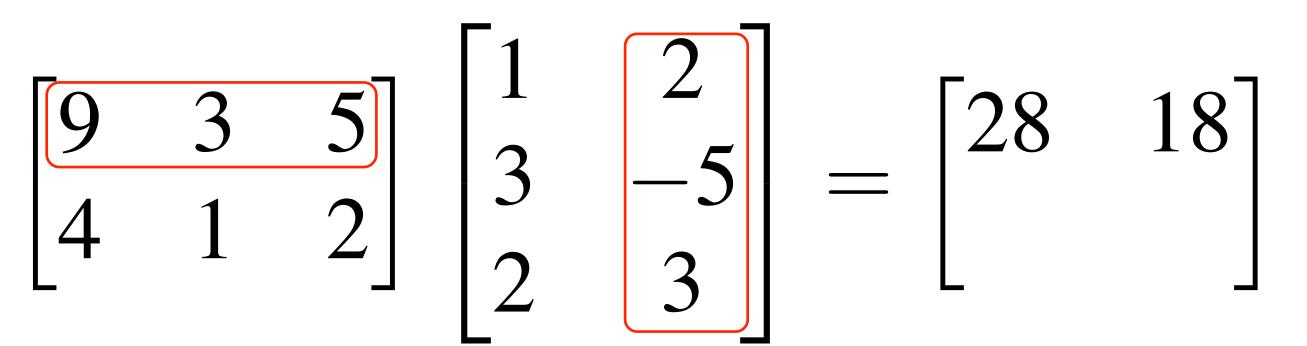


 $9 \times 1 + 3 \times 3 + 5 \times 2 = 28$

Matrix Multiplication via Inner Products

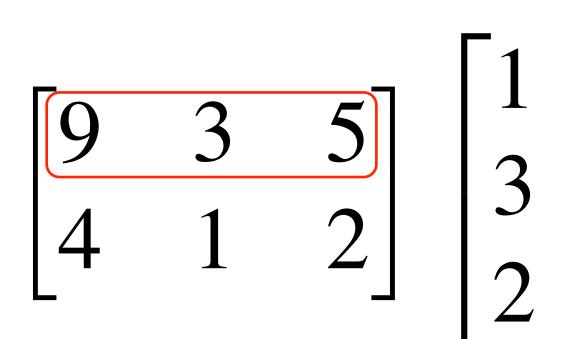
Each entry of output matrix is result of inner product of inputs matrices

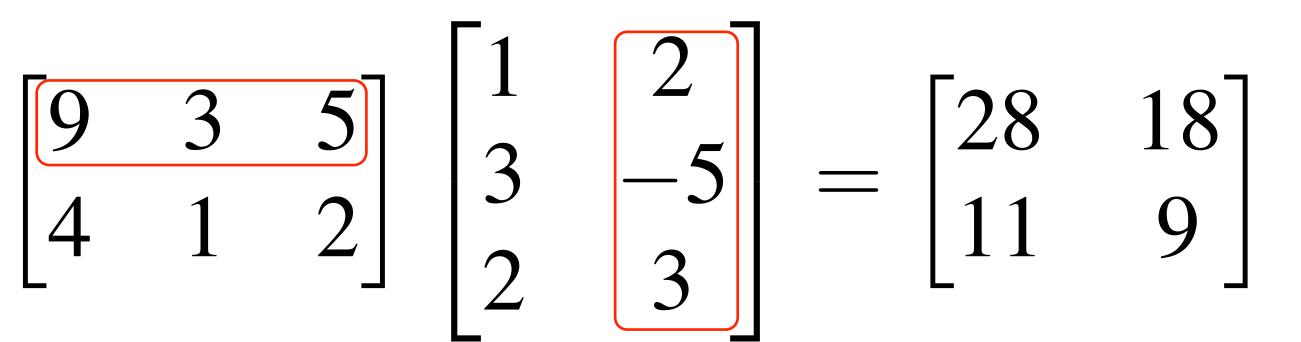


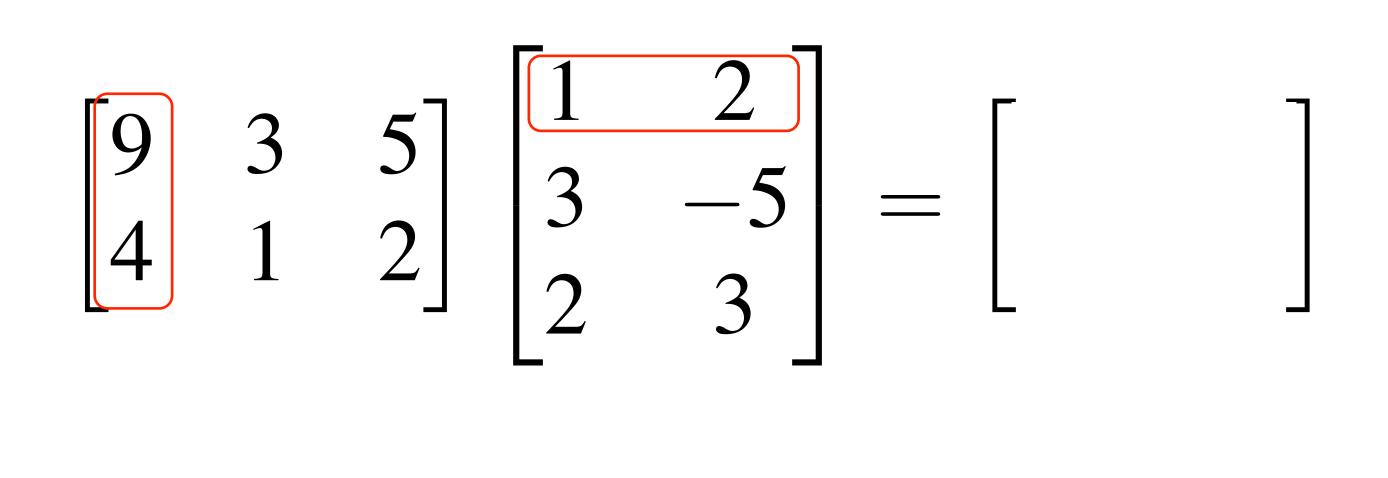


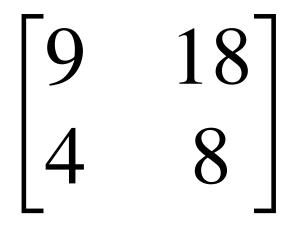
Matrix Multiplication via Inner Products

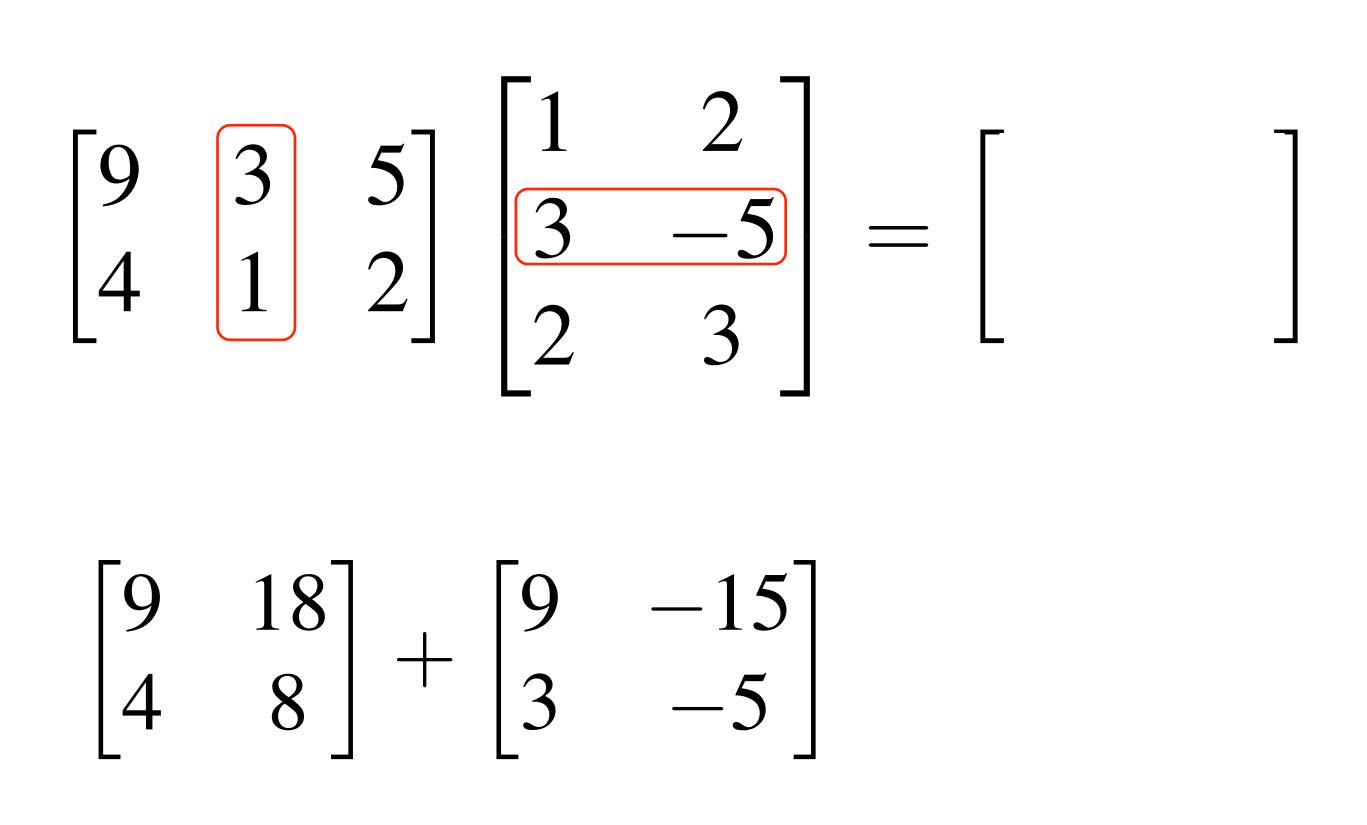
Each entry of output matrix is result of inner product of inputs matrices

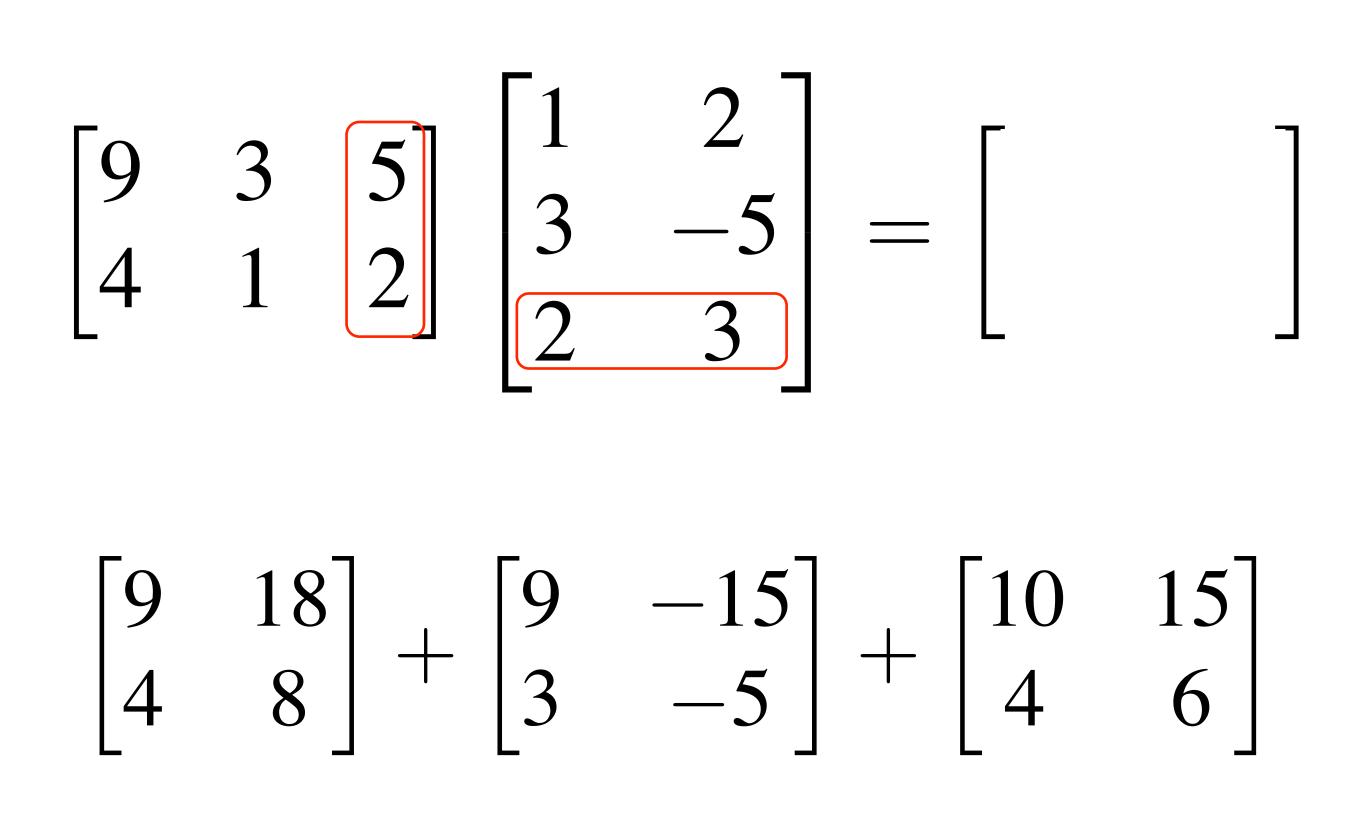








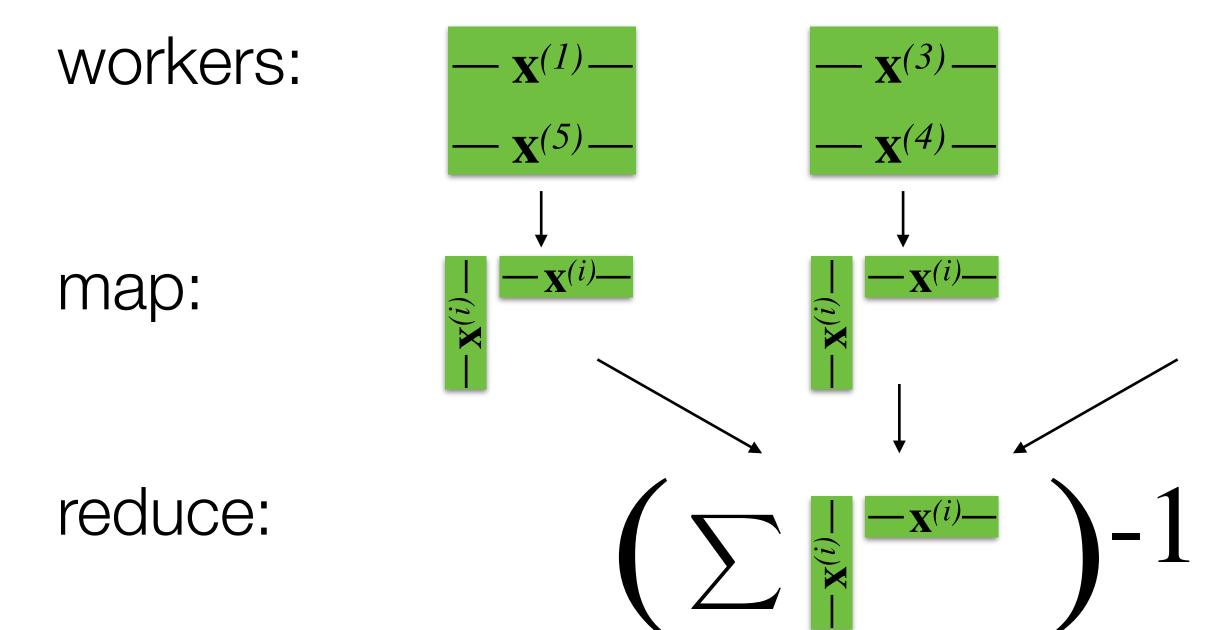


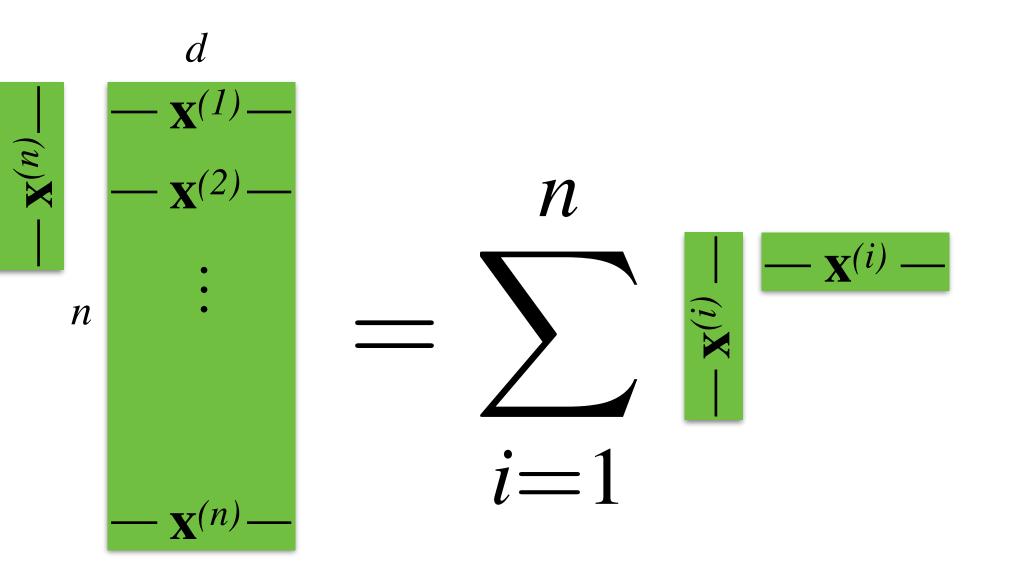


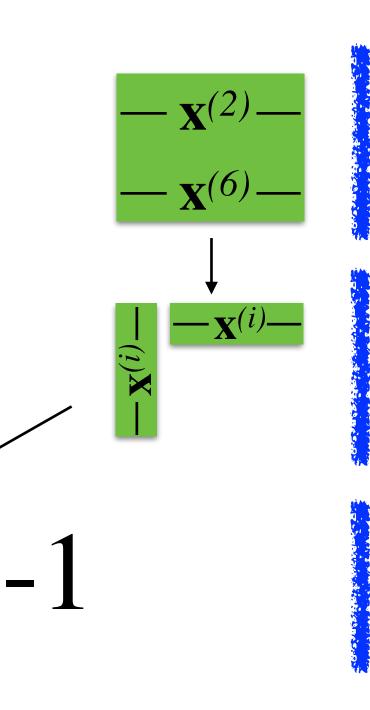




Example: n = 6; 3 workers







O(*nd*) Distributed Storage

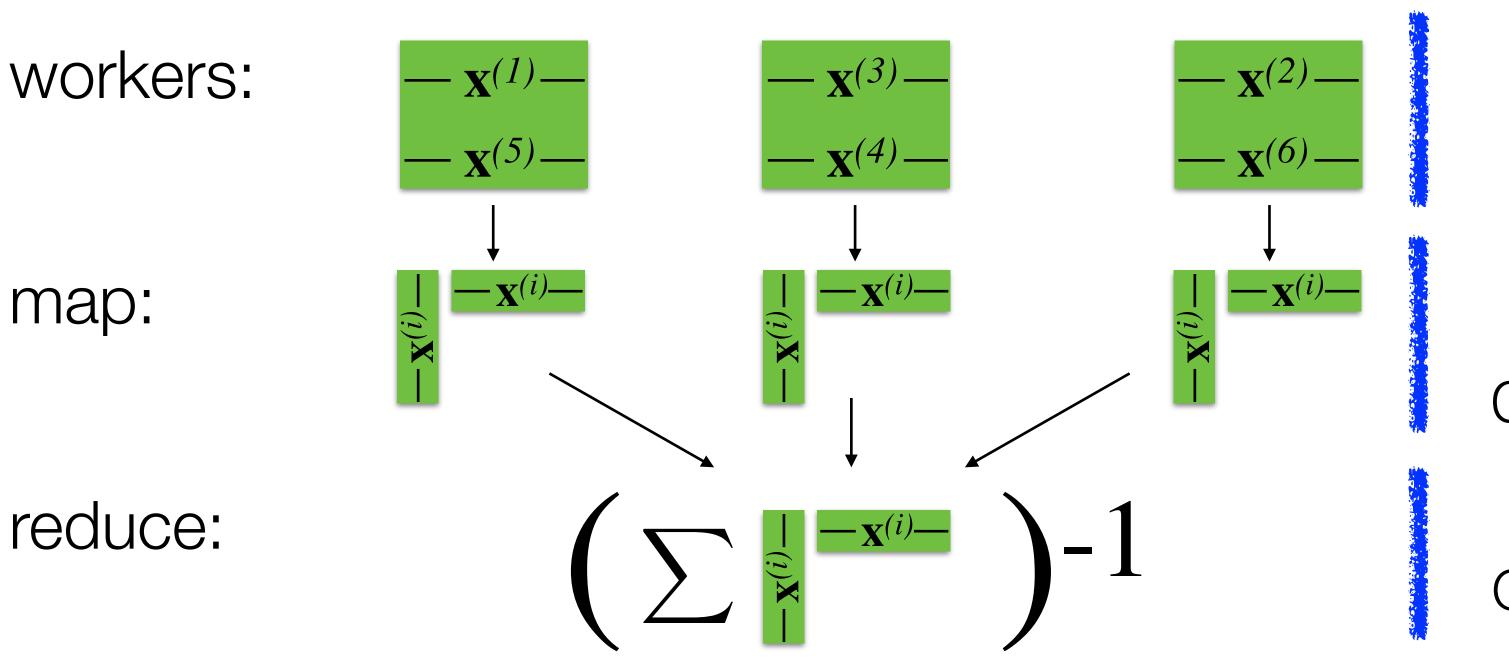
 $O(nd^2)$ Distributed Computation

 $O(d^2)$ Local Storage

 $O(d^3)$ Local $O(d^2)$ Local Computation

Storage

trainData.map(computeOuterProduct) .reduce(sumAndInvert)



O(*nd*) Distributed Storage

 $O(nd^2)$ Distributed Computation

 $O(d^2)$ Local Storage

 $O(d^3)$ Local $O(d^2)$ Local Computation

Storage

Distributed ML: Computation and Storage, Part II

Big *n* and Small *d*

Storage: $O(nd + d^2)$ floats

single machine

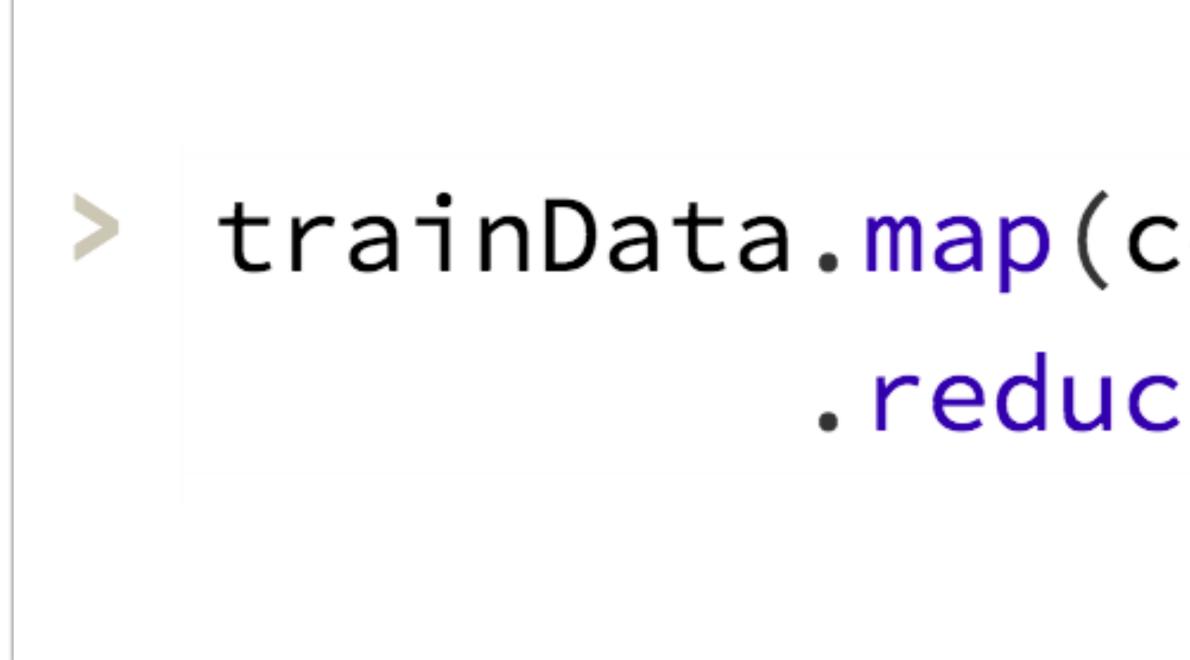
Can distribute storage and computation! • Store data points (rows of \mathbf{X}) across machines • Compute $\mathbf{X}^{\top}\mathbf{X}$ as a sum of outer products

 $\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ **Computation**: $O(nd^2 + d^3)$ operations

Assume $O(d^3)$ computation and $O(d^2)$ storage feasible on

Big *n* and Small *d*

Storage: $O(nd + d^2)$ floats



 $\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ **Computation**: $O(nd^2 + d^3)$ operations

trainData.map(computeOuterProduct) .reduce(sumAndInvert)

Storage: $O(nd + d^2)$ floats

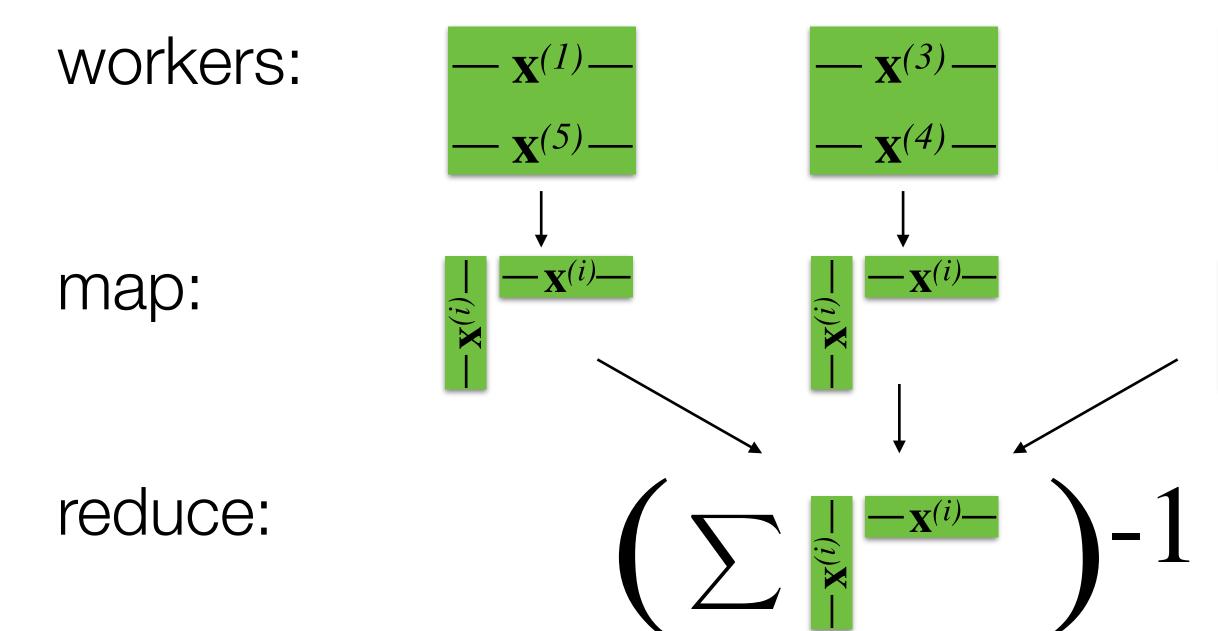
• Can't easily distribute!

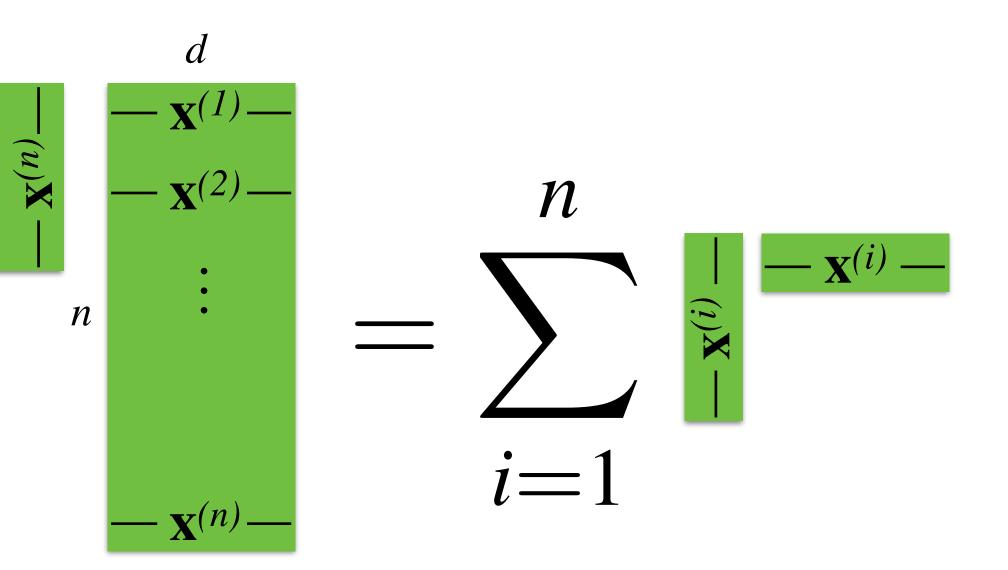
Big *n* and Big *d* $\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ **Computation**: $O(nd^2 + d^3)$ operations

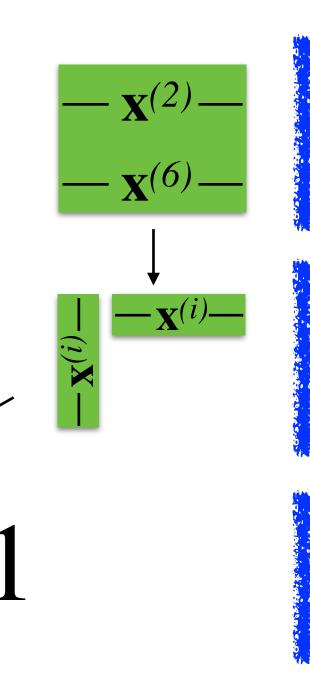
As before, storing X and computing $\mathbf{X}^{\top}\mathbf{X}$ are bottlenecks Now, storing and operating on $\mathbf{X}^{\top}\mathbf{X}$ is also a bottleneck



Example: n = 6; 3 workers







O(*nd*) Distributed Storage

 $O(nd^2)$
Distributed
Computation $O(d^2)$ Local
Storage $O(d^3)$ Local
Computation $O(d^2)$ Local
Storage

Storage: $O(nd + d^2)$ floats

• Can't easily distribute!

1st Rule of thumb Computation and storage should be linear (in n, d)

Big *n* and Big *d* $\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ **Computation**: $O(nd^2 + d^3)$ operations

As before, storing X and computing $\mathbf{X}^{\top}\mathbf{X}$ are bottlenecks Now, storing and operating on $\mathbf{X}^{\top}\mathbf{X}$ is also a bottleneck

Big *n* and Big *d*

We need methods that are linear in time and space

One idea: Exploit sparsity

• Explicit sparsity can provide orders of magnitude storage and computational gains

Sparse data is prevalent

- Text processing: bag-of-words, n-grams
- Collaborative filtering: ratings matrix
- Graphs: adjacency matrix
- Categorical features: one-hot-encoding
- Genomics: SNPs, variant calling

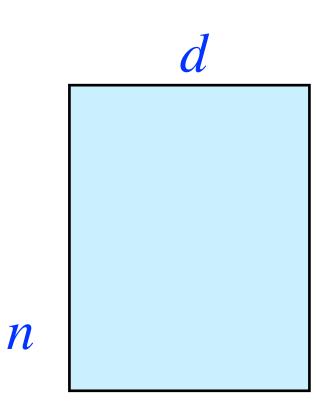
dense : 1. 0. 0. 0. 0. 0. 3.
sparse :
$$\begin{cases} size : 7 \\ indices : 0 & 6 \\ values : 1. 3. \end{cases}$$

Big *n* and Big *d*

We need methods that are linear in time and space

One idea: **Exploit sparsity**

- computational gains



• Explicit sparsity can provide orders of magnitude storage and

 Latent sparsity assumption can be used to reduce dimension, e.g., PCA, low-rank approximation (unsupervised learning)

$$\begin{array}{c|c} r & d \\ \hline r \\ \cdot \\ n \end{array}$$
 'Low-rank'

Big *n* and Big *d*

We need methods that are linear in time and space

One idea: Exploit sparsity

- computational gains

Another idea: Use different algorithms

• Gradient descent is an iterative algorithm that requires O(nd) computation and O(d)local storage per iteration

• Explicit sparsity can provide orders of magnitude storage and

• Latent sparsity assumption can be used to reduce dimension, e.g., PCA, low-rank approximation (unsupervised learning)

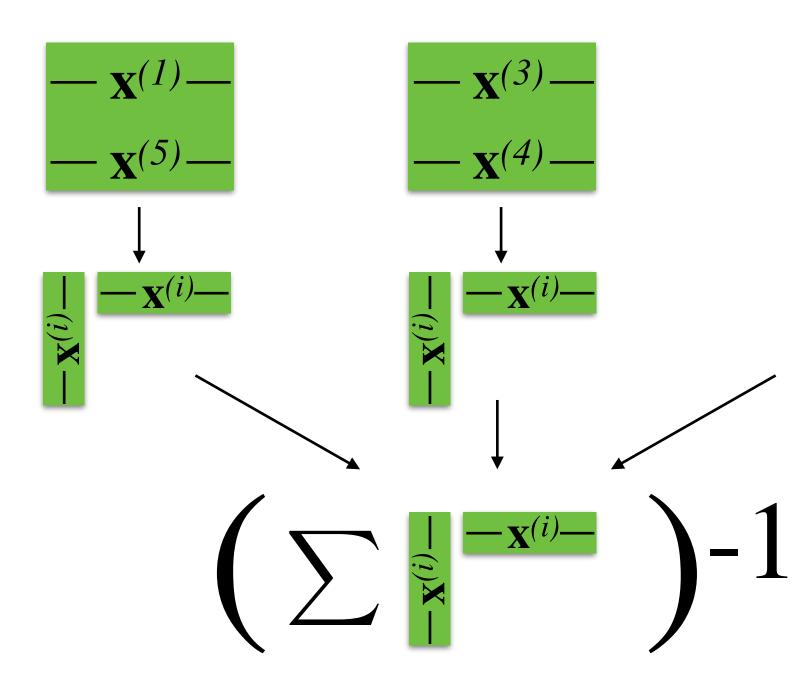
Closed Form Solution for Big n and Big d

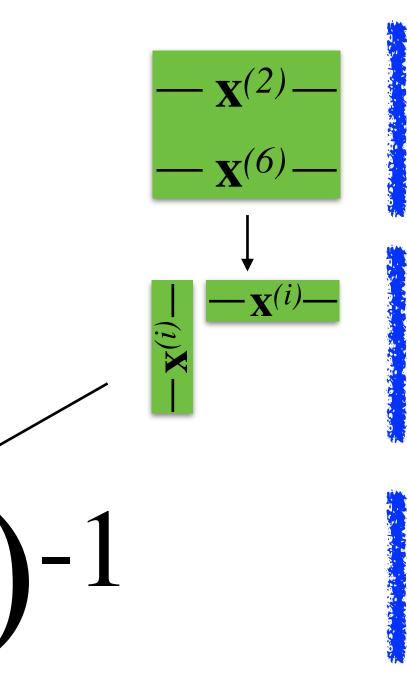
Example: n = 6; 3 workers

workers:

map:

reduce:





O(*nd*) Distributed Storage

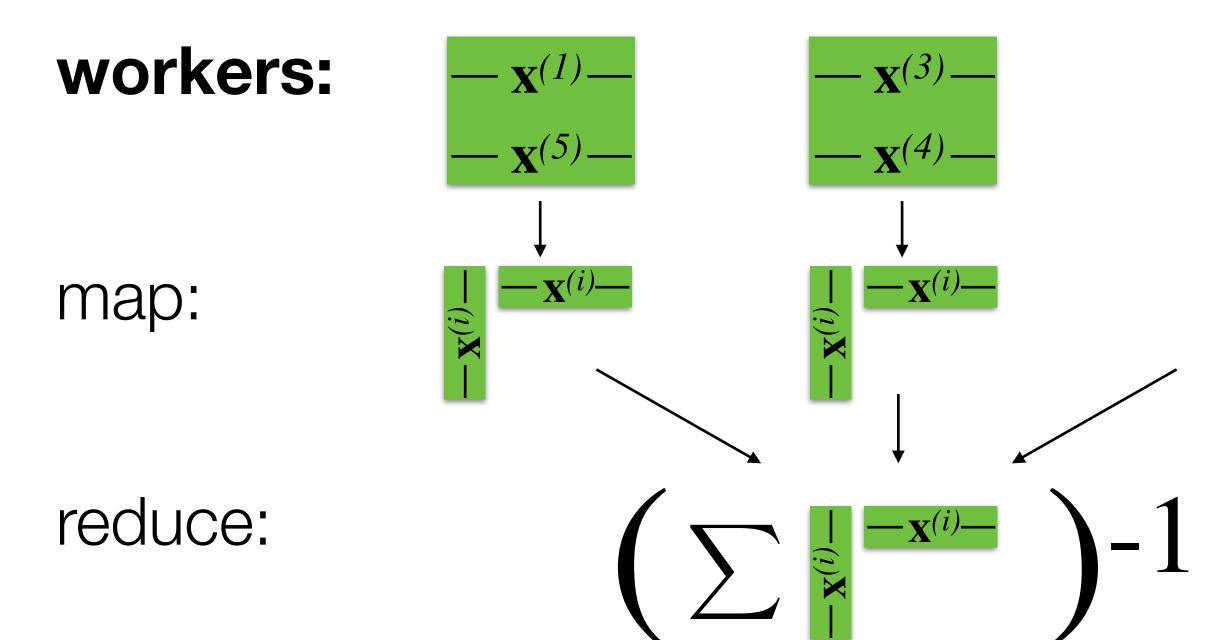
O(*nd*²) Distributed Computation

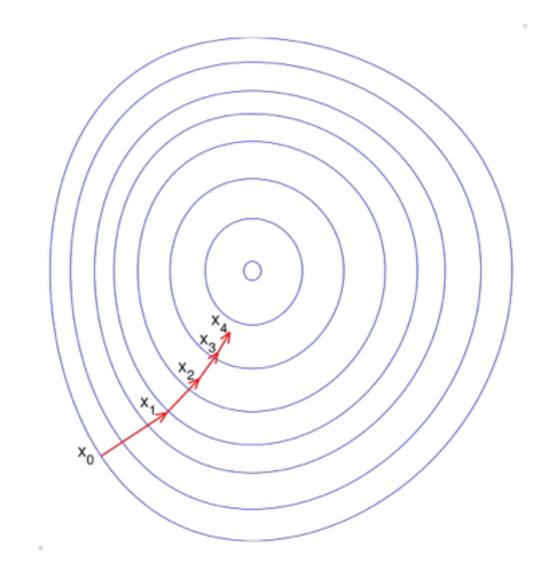
O(d²) Local Storage

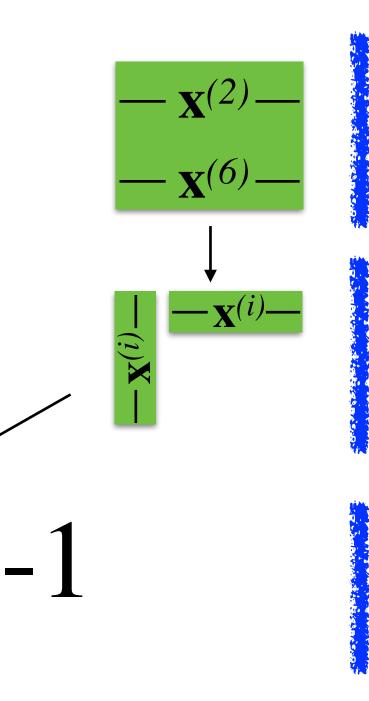
 $O(d^3)$ Local $O(d^2)$ Local Computation Storage

Gradient Descent for Big *n* and Big *d*

Example: n = 6; 3 workers







O(*nd*) Distributed Storage

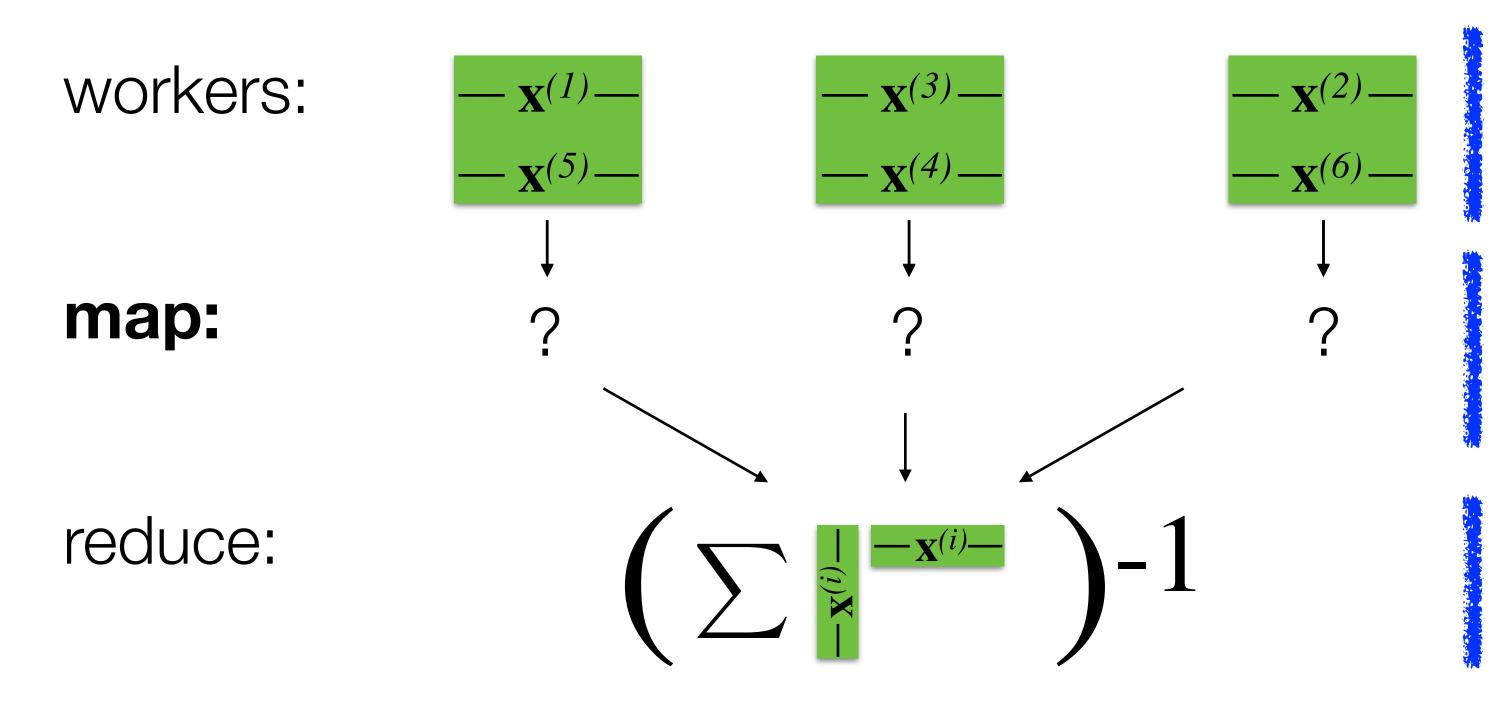
O(*nd*²) Distributed Computation

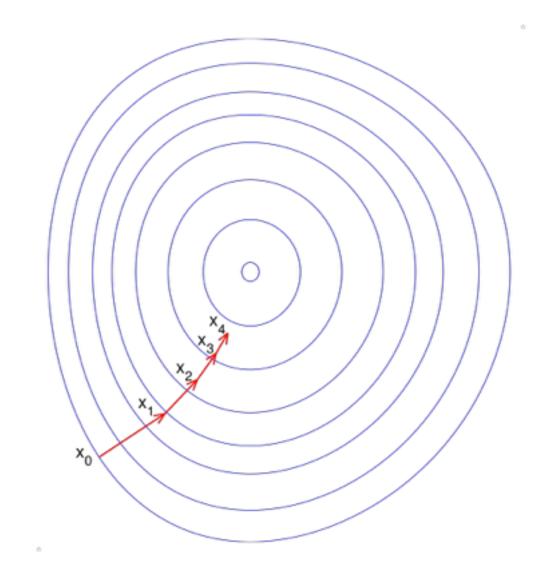
O(d²) Local Storage

 $O(d^3)$ Local $O(d^2)$ Local Computation Storage

Gradient Descent for Big *n* and Big *d*

Example: n = 6; 3 workers



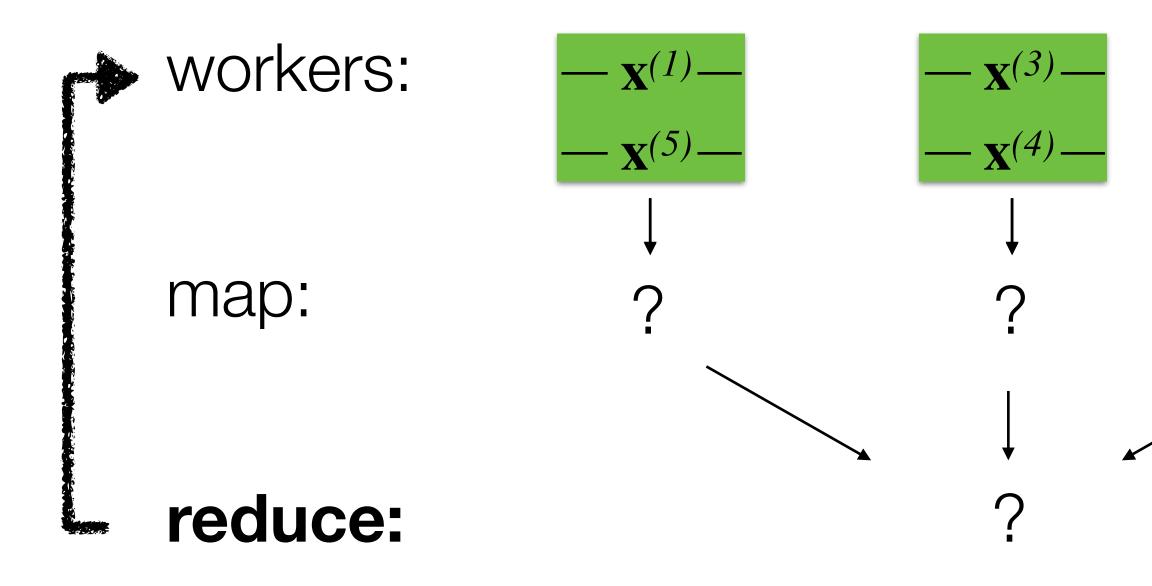


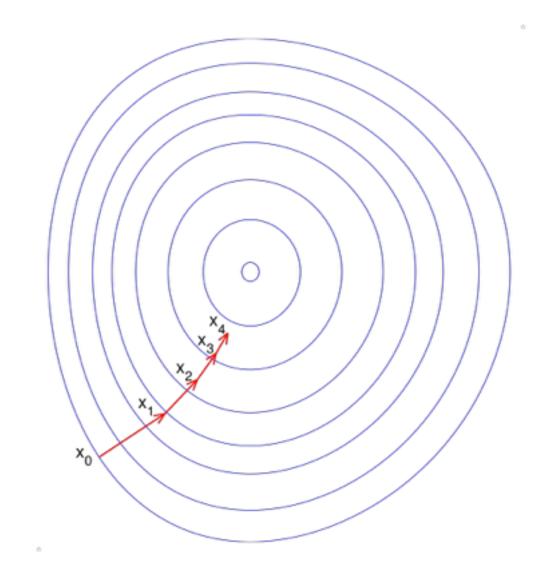
O(nd) Distributed Storage O(nd) $O(nd^2)$ Distributed Computation O(d) $O(d^2)$ Local Storage

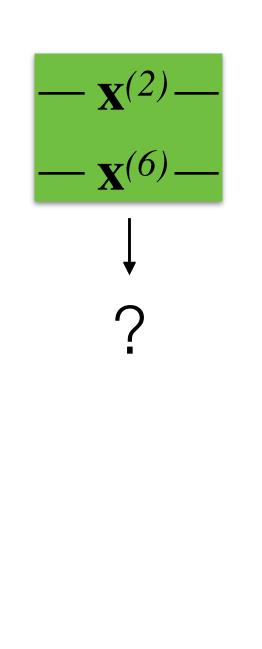
 $O(d^3)$ Local $O(d^2)$ Local Computation Storage

Gradient Descent for Big *n* and Big *d*

Example: n = 6; 3 workers







O(nd) Distributed Storage O(nd) $O(nd^2)$ Distributed Computation O(d)O(d)O(d)O(d)O(d)O(d)O(d)O(d)O(d)Storage O(d)O(d)O(d)Storage O(d)O(d)O(d)Storage O(d)O(d)O(d)Storage O(d)O(d)Storage O(d)O(d)Storage O(d)O