Linear Regression

UCLA
€databricks

Regression

Goal: Learn a mapping from observations (features) to
continuous labels given a training set (supervised learning)

Example: Height, Gender, Weight = Shoe Size

e Audio features = Song year

® Processes, memory — Power consumption
® Historical financials — Future stock price

e Many more

| inear Least Squares Regression

Example: Predicting shoe size from height, gender, and weight

FOr each observation we have a teature vector, x, and label, y

XT — (X1 X2 X3

We assume a linear mapping between features and label:

VR Wy + WiX] + WaXy + W3X3

| inear Least Squares Regression

Example: Predicting shoe size from height, gender, and weight

We can augment the feature vector to incorporate offset:

XT: | X1 X2 X3

We can then rewrite this linear mapping as scalar product:

Why a Linear Mapping*

Simple
Often works well in practice

Can introduce complexity via feature extraction

1D Example

Goal: find the line of best fit
x coordinate: features
y coordinate: labels

wWo + W1iX

\ X

Intercept / Offset Slope

y Ry

Evaluating Predictions

Can measure ‘closeness’ between label and prediction
® Shoe size: better to be off by one size than 5 sizes
® 5Song year prediction: better to be off by a year than by 20 years

What is an appropriate evaluation metric or ‘loss’ function”
e Absolute loss: |y — y

e Squared loss: (y — y)z «— Has nice mathematical properties

How Can We Learn Model (w)?

Assume we have n training points, where x) denotes the ith point

Recall two earlier points:

® [inear assumption: y = W X

® \We use squared loss: (y — 3)*

|[dea: FInd w that minimizes squared loss over training points:

min Z(E’VTX(? — yl)2
i=1
)

Given n training points with d features, we define:

e X ¢ R"™4: matrix storing points

o vy c R":real-valued labels

o v c R": predicted labels, where y = Xw
d

® w € IR": regression parameters / model to learn

Least Squares Regression: Learn mapping (w) from
features to labels that minimizes residual sum of squares:

min || Xw — y||3
W

Fquivalent min » (w'x" — y”)? by definition of Euclidean norm
=1

FIind solution by setting derivative to zero

n

1D: fiw) = [lwx —y|[3 =) (wa® =)

=1

d A . .
%(W) = ZZX(’) (wx) =y =0 «—= wx'x—x'y=0
i=1

> w=(x'x)"'x'y

wx 'x—x'y

Least Squares Regression: Learn mapping (w) from
features to labels that minimizes residual sum of squares:

min || Xw — y||3
W

Closed form solution: w = (X' X)~'X "y (if inverse exists)

Overfitting and Generalization

We want good predictions on new data, I.e., ‘'generalization’

L east squares regression minimizes training error, and could overtit
e Simpler models are more likely to generalize (Occam’s razor)

Can we change the problem to penalize for model complexity?
® |ntuitively, models with smaller weights are simpler

Given n training points with d features, we define:

e X e R™“: matrix storing points

o y c R": real-valued labels

o v c R": predicted labels, where y = Xw
d

® w € IR": regression parameters / model to learn

Ridge Regression: Learn mapping (w) that minimizes

residual sum of squares along with a regularization term:
Training Error Model Complexity

min [[Xw — y|[3 + A/ w|

free parameter trades off

Closed-form solution: w = (X' X + AL;) 'X 'y “between training error anc
model complexity

Millionsong
Regression Pipeline

UCLA
€databricks

training | @ oo O

sof —>::::::::::::%—>£ model J

full S ——
datasel |weppr ¥\ e =
new entity
............ : "4

IIIIIIIIIIIII

testset | == 0o == gccuracy prediction

Obtain Raw Data

4
Split Data
4

Feature Extraction

d

| |
| |
| |
Supervised Learning Pipeline R p—
| |
| |

—p

4

Evaluation

d
Predict

Ve

training | @ oo O

sof —>::::::::::::%—> model

g |
!i full | D B
| dataset -L> n
| new entity
i /
‘ IIIIIIIIIIII]

IIIIIIIIIIIII

testset | == 0o == gccuracy prediction

{ Obtaln Raw Data
\....__,_ = ..
Split Data

dL

Feature Extraction

{
{

4
{ Supervised Learning
—
(

Goal: Predict song’s release year from audio features

Raw Data: Millionsong Dataset from UCI ML Repository

® \\Nestern, commercial tracks from 1980-2014
® 12 timbre averages (features) and release year (label)

—p

4

Evaluation

d
Predict

— — — — — {—J]

training

SO | [model

full
dataset

IIIIIIIIIIIII

test set

{ Obtain Raw Data
1l

_Spltbata)

L

Split Data: Train on training set, evaluate with test set {
—¥| Feature Extraction

® [est set simulates unobserved data m
® J[est error tells us whether we’ve generalized well

Supervised Learning

(
.|
----[Evaluation
{

d
Predict

’[raiﬂiﬂg |||||||||||| :
o || mode

full 1 e O |
dataset | -y Yy =
', new entity
1 — /

test set S © =% accuracy prediction

Feature Extraction: Quadratic features

® (Compute pairwise feature interactions

® (Captures covariance of initial timbre features

® | cads to a non-linear model relative to raw features

Given 2 dimensional data, quadratic features are:

> P(x) = [x% X1X> XoX] x%:T

z=|z1 2] > D(z) = |21 2122 24 55

More succinctly:

i o T i _
O'(x) =[x} V2xix2 X3 ®'(z) = |22 V2uzm

Equivalent inner products:

=) xXi7; 4 2000122 + 52 = ' (x) | D' (z)

training
set

full
datasel | wepp ¥\ s =
/ new entity
test set —> % = accuracy prediction
Obtain Raw Data
d
Supervised Learning: Least Squares Regression Sp"fata

® | earn a mapping from entities to continuous N
labels given a training set
e Audio features = Song year

Given n training points with d features, we define:

e X e R™“: matrix storing points

o y c R": real-valued labels

o v c R": predicted labels, where y = Xw

o wc R?

. regression parameters / model to learn

Ridge Regression: Learn mapping (w) that minimizes

residual sum of squares along with a regularization term:
Training Error Model Complexity

min [|Xw — y|[§ + 4l [l

Closed-form solution: w = (X' X 4+ AI,) 'X 'y

Ridge Regression: Learn mapping (w) that minimizes

residual sum of squares along with a regularization term;
Training Error Model Complexity

min || Xw — y|} + 2/ [l

free parameter trades off between training.
error and model complexity

How do we choose a good value for this free parameter?
® Most methods have free parameters / ‘hyperparameters’ to tune

First thought: Search over multiple values, evaluate each on test set
® But, goal of test set Is to simulate unobserved data
® \\Ne may overfit If we use It to choose hyperparameters

Second thought: Create another hold out dataset for this search

| training | @ oo O

set - o { model J

e o |
full INDEng |
dataset | el e o b .
: Valldatlon ' |||||||||||| S | B |) new en’“’[y

| set 0 O /
7 - wuwlvlllvl'llil IVIII~|’:|

testset | == 0o == gccuracy prediction

Evaluation (Part 1): Hyperparameter tuning

® [raining: train various models

® \/alidation: evaluate various models (e.qg., Grid Search)
® [est: evaluate final model’s accuracy

(J
(J
—»(Feature Extraction |
[J
(J
(J

108 10 104 102 1

Regularization Parameter (1)

Grid Search: Exhaustively search through hyperparameter space
® Define and discretize search space (linear or log scale)
® [valuate points via validation error

Hyperparameter 2
1@ @ O O @

108 10 104 102

*—¢—o—+ #

Regularization Parameter (1)

Hyperparameter 1

'@ O C C C

Grid Search: Exhaustively search through hyperparameter space
® Define and discretize search space (linear or log scale)
® [valuate points via validation error

Evaluating Predictions

How can we compare labels and predictions for n validation points”

C . . ~\ 2 .
| east squares optimization involves squared loss, (¥ — ¥)7, so it
seems reasonable to use mean squared error (MSE):

n

1 ~ (i i
MSE = — > () =)’

n -
=1

But MSE’s unit of measurement is square of quantity being
measured, e.g., "squared years” for song prediction

More natural to use root-mean-square error (RMSE), 1.e., v MSE

training
set

full

dataset —) R
validation
set

new entity

| prediction

test set

Evaluation (Part 2): Evaluate final model
® [raining set: train various models

® \/alidation set: evaluate various models
® /est set: evaluate final model’s accuracy

(J
(J
—»(Feature Extraction |
[J
(J
(J

training | @ oo O

o —>::::::::::::%—>£ model J

full EECErrro © \
dataset | wepp [. | = S o NTTTTTTTY

validation e e D!
test set =) o O == accuracy prediction J

R i T e 4 = HorERn =

set | 7 CCCrrrrrTtom]

Obtain Raw Data

4
Split Data

4

Feature Extraction

d

—p

Predict: Final model can then be used to make
predictions on future observations, €.g., new songs

4

Evaluation

| Predict

t— J; — — — —

{
{
{
| Supervised Learning
{
(

Distributed ML.:
Computation and Storage

UCLA
€databricks

Challenge: Scalability

Classic ML technigues are not always suitable for modern datasets

60

50

40

30

20

10

Data Grows Faster

than Moore’s Law
IDC report, Kathy Yelick, LBNL]

Moore's Law
—Overall Data
—Particle Accel.

—DNA Sequencers

/

2010 2011 2012 2013 2014 2015 D .
Data Machine
Learning

Distributed
Computing

Least Squares Regression: Learn mapping (w) from
features to labels that minimizes residual sum of squares:

min || Xw — y||3
W

Closed form solution: w = (X' X)X "y (if inverse exists)

How do we solve this computationally”?
e Computational profile similar for Ridge Regression

Computing Closed Form Solution

w=(X'X)"'X"y
Computation: O(nd? + d3) operations

Consider number of arithmetic operations (+, —, x, /)

Computational bottlenecks:
e Matrix multiply of X ' X : O(nd?) operations
e Matrix inverse: O(d3) operations

Other methods (Cholesky, QR, SVD) have same complexity

Storage Requirements

w=(X'X)"'X"y
Computation: O(nd? + d3) operations
Storage: O(nd + d?) floats

Consider storing values as floats (8 bytes)

Storage bottlenecks:

e X 'X andits inverse: O(d?) floats
e X : O(nd) floats

Big n and Small d

w=(X'X)"'X"y
Computation: O(nd” + d&°) operations
Storage: O(nd + d?) floats

Assume O(d?) computation and O(d?) storage feasible on
single machine

Storing X and computing X ' X are the bottlenecks

Can distribute storage and computation!
e Store data points (rows of X) across machines
e Compute X' X as a sum of outer products

Matrix Multiplication via Inner Products

Each entry of output matrix is result of inner product of inputs matrices

OXx1+3x3+5x2=28

Matrix Multiplication via Inner Products

Each entry of output matrix is result of inner product of inputs matrices

1 [2
N lzs 181
2

Matrix Multiplication via Inner Products

Each entry of output matrix is result of inner product of inputs matrices

; _25 3 lzs 181
) 11 9

Matrix Multiplication via Outer Products

Output matrix is sum of outer products between corresponding
rows and columns of iInput matrices

Matrix Multiplication via Outer Products

Output matrix is sum of outer products between corresponding
rows and columns of iInput matrices

— 1 2
O 3] 5
I =

Matrix Multiplication via Outer Products

Output matrix is sum of outer products between corresponding
rows and columns of iInput matrices

9 3 |5 b2
=R
2 3]

9 18] [9 —15] [10 15
4 8 3 —5| |4 6

Matrix Multiplication via Outer Products

Output matrix is sum of outer products between corresponding
rows and columns of iInput matrices

o 3 5[l 2] s s
4 1 |2 {11 9

9 18] [9 —15] [10 15
4 8 3 —5| |4 6

X' X =

n d
Z I
n S
=1

Example: n = 6; 3 workers

O(nd) Distributed

workers: ?
Storage
l l I
. O(nd?))
map: { Distributed O(S‘ig)rgoga‘
Computation J
reduce: O(d3) Local O(d?) Local

Computation Storage

trainData.map (computeOuterProduct)

.reduce (sumAndInvert)

WOTKers: O(nd) Distributed
Storage
O(nd-?

Tap. I | Distiputeq Old?)Loca
§ Computation Storage

reduce: O(d3) Local O(d?) Local

f Computation Storage

Distributed ML.:
Computation and Storage,
Part i

UCLA
€databricks

Big n and Small d

w=(X'X)"'X"y
Computation: O(nd” + d&°) operations
Storage: O(nd + d?) floats

Assume O(d?) computation and O(d?) storage feasible on
single machine

Can distribute storage and computation!
® Store data points (rows of X) across machines
e Compute X 'X as a sum of outer products

Big n and Small d

w=(X'X)"'X"y
Computation: O(nd* + d°) operations
Storage: O(nd + d?) floats

trainData.map (computeQuterProduct)
.reduce (sumAndInvert)

BIg n and BIg d

w=(X'X)"'X"y
Computation: O(nd* + d&°) operations

Storage: O) floats

As before, storing X and computing X ' X are bottlenecks
Now, storing and operating on X ' X is also a bottleneck
e (Can’t easily distribute!

X' X =

n d
Z I
n S
=1

Example: n = 6; 3 workers

N q
Q. §
.
¢ Y

k!
D
B "
>
<o
"
b. ‘¢
3
le" &
T 4
G
‘LR
N
.
ja
d
0 J
A
) ¢ 9
Q. §
.
¢ ¥
1
Iy >
W "
>
B
<
(33
.
¥,

workers:

O(nd) Distributed
Storage

O(d2)" hocal
Storage

map:

§) Local Ola?) Lgcal
Compuytation Stoggge

reduce:

BIg n and BIg d

w=(X'X)"'X"y
Computation: O(nd? + d’) operations

Storage: O(nd + &”) floats

As before, storing X and computing X ' X are bottlenecks
Now, storing and operating on X ' X is also a bottleneck
e (Can’t easily distribute!

BIg n and BIg d
We need methods that are linear in time and space

One idea: Exploit sparsity

® EXxplicit sparsity can provide orders of magnitude storage and
computational gains

Sparse data is prevalent

® [ext processing: bag-of-words, n-grams dense: 1. 0. 0. 0. 0. 0. 3
. NN || SN) SN) SN) S) E—) ——

e (ollaborative filtering: ratings matrix size : 7

e Graphs: adjacency matrix sparse : q indices : 0, 6

e (Categorical features: one-hot-encoding values : 1.3,

|

Genomics: SNPs, variant calling

BIg n and BIg d
We need methods that are linear in time and space

One idea: Exploit sparsity
® EXxplicit sparsity can provide orders of magnitude storage and
computational gains

® [atent sparsity assumption can be used to reduce dimension,
e.g., PCA, low-rank approximation (unsupervised learning)

d r d

‘Low-rank’

BIg n and BIg d
We need methods that are linear in time and space

One idea: Exploit sparsity

® EXxplicit sparsity can provide orders of magnitude storage and
computational gains

® [atent sparsity assumption can be used to reduce dimension,
e.g., PCA, low-rank approximation (unsupervised learning)

Another idea: Use different algorithms

® (radient descent is an iterative algorithm
that requires O(nd) computation and O(d)
local storage per iteration A

Closed Form Solution for Big n and Big d

Example: n = 6; 3 workers

workers:

map:

reduce:

LY
] . §
.

¢ Y
k!
'
B "
>
o
B

. ¢
3
T 4
o
Lo . .
N A
h, -
Q
d
R
A
AN
§

.

¢
k!
o

\

»
d
.
>,

O(nd) Distributed
Storage

Olnd?) O(d?) Local

Computation

Distributed Storage

O(d3) Local O(d?) Local
Computation Storage

Gradient Descent for Big n
and Big d

Example: n = 6; 3 workers

map:

reduce:

O(nd)

Distributed

Storage

O(nd?)

i Distributed
§ Computation

O(d?) Local
Storage

O(d3) Local 0O(d?) Local

| Computation Storage

Gradient Descent for Big n
and Big d

Example: n = 6; 3 workers

WOrkers: — x(1)— (3
— x(°)— — x(4)—

l l

map: % o

reduce: (Z | —xi—)_1
)

"4
X3
X
XL)
X0 . | v

O(nd) Distributed
Storage
O(nd)
Distributed Storage
Computation
O(d3) Local 0O(d?) Local
Computation Storage

Gradient Descent for Big n
and Big d

Example: n = 6; 3 workers

x%,
Xa
Xo/

Xy L
X, _

Od3)-Local

Computation Storage

4 workers: [Exi= — x)— _x(— § O(nd) Distributec
(53— (4 _ x(6)— Storage
1 1 Ly o)
map. 7 [t [t Distributed ra -
\ l / Computation J
O(d
reduce: ? ()

