
Linear Regression



Regression

Goal: Learn a mapping from observations (features) to 
continuous labels given a training set (supervised learning) 

Example: Height, Gender, Weight → Shoe Size
• Audio features → Song year
• Processes, memory → Power consumption
• Historical financials → Future stock price
• Many more



Linear Least Squares Regression

Example: Predicting shoe size from height, gender, and weight

 
For each observation we have a feature vector, x, and label, y 

We assume a linear mapping between features and label: 
 

x� =
�
x1 x2 x3

�

y � w0 + w1x1 + w2x2 + w3x3



Linear Least Squares Regression

Example: Predicting shoe size from height, gender, and weight

 
We can augment the feature vector to incorporate offset: 

We can then rewrite this linear mapping as scalar product: 
 

x� =
�
1 x1 x2 x3

�

y � ŷ =
3�

i=0

wixi = w�x



Why a Linear Mapping?

Simple 

Often works well in practice 

Can introduce complexity via feature extraction



1D Example

Goal: find the line of best fit 
x coordinate: features 
y coordinate: labels

x

y

y � ŷ = w0 + w1x

Intercept / Offset Slope



Evaluating Predictions

Can measure ‘closeness’ between label and prediction
• Shoe size: better to be off by one size than 5 sizes
• Song year prediction: better to be off by a year than by 20 years

What is an appropriate evaluation metric or ‘loss’ function?
• Absolute loss:
• Squared loss: 

|y � ŷ|
(y � ŷ)2 ← Has nice mathematical properties



How Can We Learn Model (w)? 

Assume we have n training points, where        denotes the ith point

Recall two earlier points:
• Linear assumption:                 
• We use squared loss:

Idea: Find      that minimizes squared loss over training points:

(y � ŷ)2
ŷ = w�x

x(i)

w

min
w

n�

i=1

(w�x(i) � y(i))2

ŷ(i)
{



Given n training points with d features, we define:
•                  : matrix storing points
•                : real-valued labels
•              : predicted labels, where                
•              : regression parameters / model to learn

ŷ = Xw

X � Rn�d

y � Rn

ŷ � Rn

w � Rd

Least Squares Regression: Learn mapping (    ) from 
features to labels that minimizes residual sum of squares:

min
w

||Xw � y||22

w

Equivalent                                        by definition of Euclidean normmin
w

n�

i=1

(w�x(i) � y(i))2



Least Squares Regression: Learn mapping (    ) from 
features to labels that minimizes residual sum of squares:

min
w

||Xw � y||22

w

Closed form solution:                                   (if inverse exists)w = (X�X)�1X�y

Find solution by setting derivative to zero

1D: f(w) = ||wx � y||22 =
n�

i=1

(wx(i) � y(i))2

df
dw

(w) = 2
n�

i=1

x(i)(wx(i) � y(i))

� �� �
wx�x�x�y

= 0 �� wx�x � x�y = 0

�� w = (x�x)�1x�y

df
dw

(w) = 2
n�

i=1

x(i)(wx(i) � y(i))

� �� �
wx�x�x�y

= 0 �� wx�x � x�y = 0

�� w = (x�x)�1x�y



Overfitting and Generalization
We want good predictions on new data, i.e., ’generalization’

Least squares regression minimizes training error, and could overfit
• Simpler models are more likely to generalize (Occam’s razor)

Can we change the problem to penalize for model complexity?
• Intuitively, models with smaller weights are simpler



Ridge Regression: Learn mapping (    ) that minimizes 
residual sum of squares along with a regularization term:

w

min
w

||Xw � y||22 + λ||w||22

Training Error Model Complexity

Closed-form solution: w = (X�X + λId)�1X�y
free parameter trades off 

between training error and 
model complexity

Given n training points with d features, we define: 
•                  : matrix storing points 
•                : real-valued labels 
•              : predicted labels, where                 
•              : regression parameters / model to learn

ŷ = Xw

X � Rn�d

y � Rn

ŷ � Rn

w � Rd



Millionsong 
Regression Pipeline



full 
dataset

Obtain Raw Data

Feature Extraction

new entity

prediction

Predict

accuracy

Evaluation

model

Supervised LearningSupervised Learning Pipeline

training 
set

test set

Split Data



Goal: Predict song’s release year from audio features 
Raw Data: Millionsong Dataset from UCI ML Repository 
• Western, commercial tracks from 1980-2014 
• 12 timbre averages (features) and release year (label)

training 
set

full 
dataset

test set

new entity

predictionaccuracy

model

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data



Split Data: Train on training set, evaluate with test set 
• Test set simulates unobserved data 
• Test error tells us whether we’ve generalized well

training 
set

full 
dataset

test set

new entity

predictionaccuracy

model

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data



Feature Extraction: Quadratic features 
• Compute pairwise feature interactions 
• Captures covariance of initial timbre features 
• Leads to a non-linear model relative to raw features

training 
set

full 
dataset

test set

new entity

predictionaccuracy

model

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data



Given 2 dimensional data, quadratic features are:

x =
�
x1 x2

��
=� Φ(x) =

�
x21 x1x2 x2x1 x22

��

z =
�
z1 z2

��
=� Φ(z) =

�
z21 z1z2 z2z1 z22

��

More succinctly:

Φ�(x) =
�
x21

�
2x1x2 x22

�� Φ�(z) =
�
z21

�
2z1z2 z22

��

Φ(x)�Φ(z) =
�

x21z21 + 2x1x2z1z2 + x22z22 = Φ�(x)�Φ�(z)

Equivalent inner products:



Supervised Learning: Least Squares Regression 
• Learn a mapping from entities to continuous 

labels given a training set 
• Audio features → Song year

training 
set

full 
dataset

test set

new entity

predictionaccuracy

model

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data



Closed-form solution:

Ridge Regression: Learn mapping (    ) that minimizes 
residual sum of squares along with a regularization term:

Training Error Model Complexity

w

min
w

||Xw � y||22 + λ||w||22

w = (X�X + λId)�1X�y

Given n training points with d features, we define: 
•                  : matrix storing points 
•                : real-valued labels 
•              : predicted labels, where                 
•              : regression parameters / model to learn

ŷ = Xw

X � Rn�d

y � Rn

ŷ � Rn

w � Rd



How do we choose a good value for this free parameter?
• Most methods have free parameters / ‘hyperparameters’ to tune
First thought: Search over multiple values, evaluate each on test set
• But, goal of test set is to simulate unobserved data
• We may overfit if we use it to choose hyperparameters
Second thought: Create another hold out dataset for this search

Ridge Regression: Learn mapping (    ) that minimizes 
residual sum of squares along with a regularization term:

Training Error Model Complexity

w

min
w

||Xw � y||22 + λ||w||22
free parameter trades off between training 

error and model complexity



Evaluation (Part 1): Hyperparameter tuning 
• Training: train various models 
• Validation: evaluate various models (e.g., Grid Search) 
• Test: evaluate final model’s accuracy

training 
set

full 
dataset

test set

new entity

predictionaccuracy

model

validation 
set

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data



Grid Search: Exhaustively search through hyperparameter space
• Define and discretize search space (linear or log scale)
• Evaluate points via validation error

λRegulariza*on-Parameter-(--)

10-8 10-6 10-4 10-2 1



Hy
pe

rp
ar
am

et
er
-1

Hyperparameter-2

Grid Search: Exhaustively search through hyperparameter space
• Define and discretize search space (linear or log scale)
• Evaluate points via validation error

λRegulariza*on-Parameter-(--)

10-8 10-6 10-4 10-2 1



Evaluating Predictions

How can we compare labels and predictions for n validation points?
Least squares optimization involves squared loss,             , so it 
seems reasonable to use mean squared error (MSE): 

                     MSE = 

But MSE’s unit of measurement is square of quantity being 
measured, e.g., “squared years” for song prediction
More natural to use root-mean-square error (RMSE), i.e.,    MSE

(y � ŷ)2

1
n

n�

i=1

(ŷ(i) � y(i))2

�



Evaluation (Part 2): Evaluate final model 
• Training set: train various models 
• Validation set: evaluate various models 
• Test set: evaluate final model’s accuracy

training 
set

full 
dataset

test set

new entity

predictionaccuracy

model

validation 
set

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data



Predict: Final model can then be used to make 
predictions on future observations, e.g., new songs

training 
set

full 
dataset

test set

new entity

predictionaccuracy

model

validation 
set

Obtain Raw Data

Feature Extraction

Predict

Evaluation

Supervised Learning

Split Data



Distributed ML: 
Computation and Storage



Classic ML techniques are not always suitable for modern datasets

0"

10"

20"

30"

40"

50"

60"

2010" 2011" 2012" 2013" 2014" 2015"

Moore's"Law"
Overall"Data"
Par8cle"Accel."
DNA"Sequencers"

Data"Grows"faster"than"Moore’s"Law"
[IDC%report,%Kathy%Yelick,%LBNL]%

Challenge: Scalability

Machine  
Learning

Data

Distributed 
Computing

Data Grows Faster 
than Moore’s Law 
[IDC report, Kathy Yelick, LBNL]



Closed form solution:                                  (if inverse exists) 

How do we solve this computationally? 
• Computational profile similar for Ridge Regression

w = (X�X)�1X�y

Least Squares Regression: Learn mapping (    ) from 
features to labels that minimizes residual sum of squares:

min
w

||Xw � y||22

w



w = (X�X)�1X�y

Computing Closed Form Solution

Consider number of arithmetic operations ( +, −, ×, / )

Computational bottlenecks:
• Matrix multiply of            : O(nd2) operations
• Matrix inverse: O(d3) operations

Other methods (Cholesky, QR, SVD) have same complexity

X�X

Computation: O(nd2 + d3) operations



Storage Requirements

Consider storing values as floats (8 bytes)

Storage bottlenecks:
•            and its inverse: O(d2) floats
•     : O(nd) floats

X�X

X

Computation: O(nd2 + d3) operations
Storage: O(nd + d2) floats

w = (X�X)�1X�y



Computation: O(nd2 + d3) operations 
Storage: O(nd + d2) floats

w = (X�X)�1X�y

Big n and Small d

Assume O(d3) computation and O(d2) storage feasible on 
single machine

Storing      and computing            are the bottlenecks

Can distribute storage and computation!
• Store data points (rows of     ) across machines
• Compute            as a sum of outer products

X
X�X

X�XX



Matrix Multiplication via Inner Products

�
9 3 5
4 1 2

� �

�
1 2
3 �5
2 3

�

� =

�
28 18
11 9

�

9� 1+ 3� 3+ 5� 2 = 28

Each entry of output matrix is result of inner product of inputs matrices



Matrix Multiplication via Inner Products

�
9 3 5
4 1 2

� �

�
1 2
3 �5
2 3

�

� =

�
28 18
11 9

�

Each entry of output matrix is result of inner product of inputs matrices



Matrix Multiplication via Inner Products

�
9 3 5
4 1 2

� �

�
1 2
3 �5
2 3

�

� =

�
28 18
11 9

�

Each entry of output matrix is result of inner product of inputs matrices



Matrix Multiplication via Outer Products

�
9 3 5
4 1 2

� �

�
1 2
3 �5
2 3

�

� =

�
28 18
11 9

�

�
9 18
4 8

�
+

�
9 �15
3 �5

�
+

�
10 15
4 6

�

Output matrix is sum of outer products between corresponding 
rows and columns of input matrices



Matrix Multiplication via Outer Products

�
9 3 5
4 1 2

� �

�
1 2
3 �5
2 3

�

� =

�
28 18
11 9

�

�
9 18
4 8

�
+

�
9 �15
3 �5

�
+

�
10 15
4 6

�

Output matrix is sum of outer products between corresponding 
rows and columns of input matrices



Matrix Multiplication via Outer Products

�
9 3 5
4 1 2

� �

�
1 2
3 �5
2 3

�

� =

�
28 18
11 9

�

�
9 18
4 8

�
+

�
9 �15
3 �5

�
+

�
10 15
4 6

�

Output matrix is sum of outer products between corresponding 
rows and columns of input matrices



Matrix Multiplication via Outer Products

�
9 3 5
4 1 2

� �

�
1 2
3 �5
2 3

�

� =

�
28 18
11 9

�

�
9 18
4 8

�
+

�
9 �15
3 �5

�
+

�
10 15
4 6

�

Output matrix is sum of outer products between corresponding 
rows and columns of input matrices



Example: n = 6; 3 workers

O(nd) Distributed 
Storage

x(1)

…

x(
1) …

d

n

n

d

x(2)

x(n)

x(
2)

x(
n)

=
n�

i=1

x(
i)

x(i)

workers: x(1)

x(5)

x(3)

x(4)

x(2)

x(6)

map:

x(
i)

x(i)
x(

i)
x(i)

x(
i)

x(i)

(        )-1reduce: �

x(
i)

x(i)

X�X =

O(nd2) 
Distributed 

Computation
O(d2) Local 

Storage

O(d3) Local 
Computation

O(d2) Local 
Storage



Example: n = 6; 3 workers

O(nd) Distributed 
Storage

x(1)

…

x(
1) …

d

n

n

d

x(2)

x(n)

x(
2)

x(
n)

=
n�

i=1

x(
i)

x(i)

workers: x(1)

x(5)

x(3)

x(4)

x(2)

x(6)

map:

x(
i)

x(i)
x(

i)
x(i)

x(
i)

x(i)

(        )-1reduce: �

x(
i)

x(i)

X�X =

O(nd2) 
Distributed 

Computation
O(d2) Local 

Storage

O(d3) Local 
Computation

O(d2) Local 
Storage



Distributed ML: 
Computation and Storage, 

Part II



Computation: O(nd2 + d3) operations 
Storage: O(nd + d2) floats

w = (X�X)�1X�y

Big n and Small d

Assume O(d3) computation and O(d2) storage feasible on 
single machine 

Can distribute storage and computation! 
• Store data points (rows of     ) across machines 
• Compute            as a sum of outer products

X
X�X



Computation: O(nd2 + d3) operations 
Storage: O(nd + d2) floats

w = (X�X)�1X�y

Big n and Small d

Assume O(d3) computation and O(d2) storage feasible on 
single machine 

Can distribute storage and computation! 
• Store data points (rows of     ) across machines 
• Compute            as a sum of outer products

X
X�X



Computation: O(nd2 + d3) operations 
Storage: O(nd + d2) floats

w = (X�X)�1X�y

Big n and Big d

As before, storing      and computing           are bottlenecks
Now, storing and operating on           is also a bottleneck

• Can’t easily distribute!

X�XX

X�X



Example: n = 6; 3 workers

x(1)

…

x(
1) …

d

n

n

d

x(2)

x(n)

x(
2)

x(
n)

=
n�

i=1

x(
i)

x(i)

workers: x(1)

x(5)

x(3)

x(4)

x(2)

x(6)

map:

x(
i)

x(i)
x(

i)
x(i)

x(
i)

x(i)

(        )-1reduce: �

x(
i)

x(i)

X�X =

O(nd) Distributed 
Storage

O(nd2) 
Distributed 

Computation
O(d2) Local 

Storage

O(d3) Local 
Computation

O(d2) Local 
Storage



Computation: O(nd2 + d3) operations 
Storage: O(nd + d2) floats

w = (X�X)�1X�y

Big n and Big d

As before, storing      and computing           are bottlenecks 
Now, storing and operating on           is also a bottleneck 
• Can’t easily distribute!

X�XX

X�X

1st Rule of thumb 
Computation and storage should be linear (in n, d)



Big n and Big d

Sparse data is prevalent 
• Text processing: bag-of-words, n-grams 
• Collaborative filtering: ratings matrix 
• Graphs: adjacency matrix 
• Categorical features: one-hot-encoding 
• Genomics: SNPs, variant calling

dense : 1. 0. 0. 0. 0. 0. 3.

sparse :

8
><

>:

size : 7

indices : 0 6

values : 1. 3.

We need methods that are linear in time and space

One idea: Exploit sparsity
• Explicit sparsity can provide orders of magnitude storage and 

computational gains



Big n and Big d

n

d

≈ ‘Low-rank’

d

n

r
r

We need methods that are linear in time and space 

One idea: Exploit sparsity 
• Explicit sparsity can provide orders of magnitude storage and 

computational gains 
• Latent sparsity assumption can be used to reduce dimension, 

e.g., PCA, low-rank approximation (unsupervised learning)



Big n and Big d

Another idea: Use different algorithms
• Gradient descent is an iterative algorithm 

that requires O(nd) computation and O(d) 
local storage per iteration

We need methods that are linear in time and space 

One idea: Exploit sparsity 
• Explicit sparsity can provide orders of magnitude storage and 

computational gains 
• Latent sparsity assumption can be used to reduce dimension, 

e.g., PCA, low-rank approximation (unsupervised learning)



Example: n = 6; 3 workers

workers: x(1)

x(5)

x(3)

x(4)

x(2)

x(6)

map:

x(
i)

x(i)
x(

i)
x(i)

x(
i)

x(i)

(        )-1reduce: �

x(
i)

x(i)

O(nd) Distributed 
Storage

O(nd2) 
Distributed 

Computation
O(d2) Local 

Storage

O(d3) Local 
Computation

O(d2) Local 
Storage

Closed Form Solution for Big n and Big d



Example: n = 6; 3 workers

workers: x(1)

x(5)

x(3)

x(4)

x(2)

x(6)

map:

x(
i)

x(i)
x(

i)
x(i)

x(
i)

x(i)

(        )-1reduce: �

x(
i)

x(i)

O(nd) Distributed 
Storage

O(nd2) 
Distributed 

Computation
O(d2) Local 

Storage

Gradient Descent for Big n 
and Big d

O(d3) Local 
Computation

O(d2) Local 
Storage



Example: n = 6; 3 workers

workers: x(1)

x(5)

x(3)

x(4)

x(2)

x(6)

(        )-1reduce: �

x(
i)

x(i)

O(nd) Distributed 
Storage

O(nd2) 
Distributed 

Computation
O(d2) Local 

Storage

Gradient Descent for Big n 
and Big d

map: ? ? ?

O(d3) Local 
Computation

O(d2) Local 
Storage

O(nd) O(d)



Example: n = 6; 3 workers

workers: x(1)

x(5)

x(3)

x(4)

x(2)

x(6)

reduce:

O(nd) Distributed 
Storage

O(nd2) 
Distributed 

Computation
O(d2) Local 

Storage

Gradient Descent for Big n 
and Big d

map: ? ? ?
O(nd)

O(d3) Local 
Computation

O(d2) Local 
Storage

O(d)

O(d) O(d)?


