
Linear Regression



Regression

Goal: Learn a mapping from observations (features) to 
continuous labels given a training set (supervised learning) 

Example: Height, Gender, Weight → Shoe Size
• Audio features → Song year
• Processes, memory → Power consumption
• Historical financials → Future stock price
• Many more



Linear Least Squares Regression

Example: Predicting shoe size from height, gender, and weight

 
For each observation we have a feature vector, x, and label, y 

We assume a linear mapping between features and label: 
 

x� =
�
x1 x2 x3

�

y � w0 + w1x1 + w2x2 + w3x3



Linear Least Squares Regression

Example: Predicting shoe size from height, gender, and weight

 
We can augment the feature vector to incorporate offset: 

We can then rewrite this linear mapping as scalar product: 
 

x� =
�
1 x1 x2 x3

�

y � ŷ =
3�

i=0

wixi = w�x



Why a Linear Mapping?

Simple 

Often works well in practice 

Can introduce complexity via feature extraction



1D Example

Goal: find the line of best fit 
x coordinate: features 
y coordinate: labels

x

y

y � ŷ = w0 + w1x

Intercept / Offset Slope



Evaluating Predictions

Can measure ‘closeness’ between label and prediction
• Shoe size: better to be off by one size than 5 sizes
• Song year prediction: better to be off by a year than by 20 years

What is an appropriate evaluation metric or ‘loss’ function?
• Absolute loss:
• Squared loss: 

|y � ŷ|
(y � ŷ)2 ← Has nice mathematical properties



How Can We Learn Model (w)? 

Assume we have n training points, where        denotes the ith point

Recall two earlier points:
• Linear assumption:                 
• We use squared loss:

Idea: Find      that minimizes squared loss over training points:

(y � ŷ)2
ŷ = w�x

x(i)

w

min
w

n�

i=1

(w�x(i) � y(i))2

ŷ(i)
{



Given n training points with d features, we define:
•                  : matrix storing points
•                : real-valued labels
•              : predicted labels, where                
•              : regression parameters / model to learn

ŷ = Xw

X � Rn�d

y � Rn

ŷ � Rn

w � Rd

Least Squares Regression: Learn mapping (    ) from 
features to labels that minimizes residual sum of squares:

min
w

||Xw � y||22

w

Equivalent                                        by definition of Euclidean normmin
w

n�

i=1

(w�x(i) � y(i))2



Least Squares Regression: Learn mapping (    ) from 
features to labels that minimizes residual sum of squares:

min
w

||Xw � y||22

w

Closed form solution:                                   (if inverse exists)w = (X�X)�1X�y

Find solution by setting derivative to zero

1D: f(w) = ||wx � y||22 =
n�

i=1

(wx(i) � y(i))2

df
dw

(w) = 2
n�

i=1

x(i)(wx(i) � y(i))

� �� �
wx�x�x�y

= 0 �� wx�x � x�y = 0

�� w = (x�x)�1x�y

df
dw

(w) = 2
n�

i=1

x(i)(wx(i) � y(i))

� �� �
wx�x�x�y

= 0 �� wx�x � x�y = 0

�� w = (x�x)�1x�y



Overfitting and Generalization
We want good predictions on new data, i.e., ’generalization’

Least squares regression minimizes training error, and could overfit
• Simpler models are more likely to generalize (Occam’s razor)

Can we change the problem to penalize for model complexity?
• Intuitively, models with smaller weights are simpler



Ridge Regression: Learn mapping (    ) that minimizes 
residual sum of squares along with a regularization term:

w

min
w

||Xw � y||22 + λ||w||22

Training Error Model Complexity

Closed-form solution: w = (X�X + λId)�1X�y
free parameter trades off 

between training error and 
model complexity

Given n training points with d features, we define: 
•                  : matrix storing points 
•                : real-valued labels 
•              : predicted labels, where                 
•              : regression parameters / model to learn

ŷ = Xw

X � Rn�d

y � Rn

ŷ � Rn

w � Rd



Millionsong 
Regression Pipeline
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Goal: Predict song’s release year from audio features 
Raw Data: Millionsong Dataset from UCI ML Repository 
• Western, commercial tracks from 1980-2014 
• 12 timbre averages (features) and release year (label)
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Split Data: Train on training set, evaluate with test set 
• Test set simulates unobserved data 
• Test error tells us whether we’ve generalized well
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Feature Extraction: Quadratic features 
• Compute pairwise feature interactions 
• Captures covariance of initial timbre features 
• Leads to a non-linear model relative to raw features
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Given 2 dimensional data, quadratic features are:

x =
�
x1 x2

��
=� Φ(x) =

�
x21 x1x2 x2x1 x22

��

z =
�
z1 z2

��
=� Φ(z) =

�
z21 z1z2 z2z1 z22

��

More succinctly:

Φ�(x) =
�
x21

�
2x1x2 x22

�� Φ�(z) =
�
z21

�
2z1z2 z22

��

Φ(x)�Φ(z) =
�

x21z21 + 2x1x2z1z2 + x22z22 = Φ�(x)�Φ�(z)

Equivalent inner products:



Supervised Learning: Least Squares Regression 
• Learn a mapping from entities to continuous 

labels given a training set 
• Audio features → Song year
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Closed-form solution:

Ridge Regression: Learn mapping (    ) that minimizes 
residual sum of squares along with a regularization term:

Training Error Model Complexity

w

min
w

||Xw � y||22 + λ||w||22

w = (X�X + λId)�1X�y

Given n training points with d features, we define: 
•                  : matrix storing points 
•                : real-valued labels 
•              : predicted labels, where                 
•              : regression parameters / model to learn

ŷ = Xw

X � Rn�d

y � Rn

ŷ � Rn

w � Rd



How do we choose a good value for this free parameter?
• Most methods have free parameters / ‘hyperparameters’ to tune
First thought: Search over multiple values, evaluate each on test set
• But, goal of test set is to simulate unobserved data
• We may overfit if we use it to choose hyperparameters
Second thought: Create another hold out dataset for this search

Ridge Regression: Learn mapping (    ) that minimizes 
residual sum of squares along with a regularization term:

Training Error Model Complexity

w

min
w

||Xw � y||22 + λ||w||22
free parameter trades off between training 

error and model complexity



Evaluation (Part 1): Hyperparameter tuning 
• Training: train various models 
• Validation: evaluate various models (e.g., Grid Search) 
• Test: evaluate final model’s accuracy
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Grid Search: Exhaustively search through hyperparameter space
• Define and discretize search space (linear or log scale)
• Evaluate points via validation error

λRegulariza*on-Parameter-(--)

10-8 10-6 10-4 10-2 1
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Grid Search: Exhaustively search through hyperparameter space
• Define and discretize search space (linear or log scale)
• Evaluate points via validation error

λRegulariza*on-Parameter-(--)

10-8 10-6 10-4 10-2 1



Evaluating Predictions

How can we compare labels and predictions for n validation points?
Least squares optimization involves squared loss,             , so it 
seems reasonable to use mean squared error (MSE): 

                     MSE = 

But MSE’s unit of measurement is square of quantity being 
measured, e.g., “squared years” for song prediction
More natural to use root-mean-square error (RMSE), i.e.,    MSE

(y � ŷ)2

1
n

n�

i=1

(ŷ(i) � y(i))2

�



Evaluation (Part 2): Evaluate final model 
• Training set: train various models 
• Validation set: evaluate various models 
• Test set: evaluate final model’s accuracy
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Predict: Final model can then be used to make 
predictions on future observations, e.g., new songs
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Distributed ML: 
Computation and Storage



Classic ML techniques are not always suitable for modern datasets
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Closed form solution:                                  (if inverse exists) 

How do we solve this computationally? 
• Computational profile similar for Ridge Regression

w = (X�X)�1X�y

Least Squares Regression: Learn mapping (    ) from 
features to labels that minimizes residual sum of squares:

min
w

||Xw � y||22

w



w = (X�X)�1X�y

Computing Closed Form Solution

Consider number of arithmetic operations ( +, −, ×, / )

Computational bottlenecks:
• Matrix multiply of            : O(nd2) operations
• Matrix inverse: O(d3) operations

Other methods (Cholesky, QR, SVD) have same complexity

X�X

Computation: O(nd2 + d3) operations



Storage Requirements

Consider storing values as floats (8 bytes)

Storage bottlenecks:
•            and its inverse: O(d2) floats
•     : O(nd) floats

X�X

X

Computation: O(nd2 + d3) operations
Storage: O(nd + d2) floats

w = (X�X)�1X�y



Computation: O(nd2 + d3) operations 
Storage: O(nd + d2) floats

w = (X�X)�1X�y

Big n and Small d

Assume O(d3) computation and O(d2) storage feasible on 
single machine

Storing      and computing            are the bottlenecks

Can distribute storage and computation!
• Store data points (rows of     ) across machines
• Compute            as a sum of outer products

X
X�X

X�XX



Matrix Multiplication via Inner Products

�
9 3 5
4 1 2

� �

�
1 2
3 �5
2 3

�

� =

�
28 18
11 9

�

9� 1+ 3� 3+ 5� 2 = 28

Each entry of output matrix is result of inner product of inputs matrices
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Matrix Multiplication via Inner Products
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Matrix Multiplication via Outer Products
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Output matrix is sum of outer products between corresponding 
rows and columns of input matrices
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Example: n = 6; 3 workers

O(nd) Distributed 
Storage
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Distributed ML: 
Computation and Storage, 

Part II



Computation: O(nd2 + d3) operations 
Storage: O(nd + d2) floats

w = (X�X)�1X�y

Big n and Small d

Assume O(d3) computation and O(d2) storage feasible on 
single machine 

Can distribute storage and computation! 
• Store data points (rows of     ) across machines 
• Compute            as a sum of outer products

X
X�X



Computation: O(nd2 + d3) operations 
Storage: O(nd + d2) floats

w = (X�X)�1X�y

Big n and Small d

Assume O(d3) computation and O(d2) storage feasible on 
single machine 

Can distribute storage and computation! 
• Store data points (rows of     ) across machines 
• Compute            as a sum of outer products

X
X�X



Computation: O(nd2 + d3) operations 
Storage: O(nd + d2) floats

w = (X�X)�1X�y

Big n and Big d

As before, storing      and computing           are bottlenecks
Now, storing and operating on           is also a bottleneck

• Can’t easily distribute!

X�XX

X�X



Example: n = 6; 3 workers
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Computation: O(nd2 + d3) operations 
Storage: O(nd + d2) floats

w = (X�X)�1X�y

Big n and Big d

As before, storing      and computing           are bottlenecks 
Now, storing and operating on           is also a bottleneck 
• Can’t easily distribute!

X�XX

X�X

1st Rule of thumb 
Computation and storage should be linear (in n, d)



Big n and Big d

Sparse data is prevalent 
• Text processing: bag-of-words, n-grams 
• Collaborative filtering: ratings matrix 
• Graphs: adjacency matrix 
• Categorical features: one-hot-encoding 
• Genomics: SNPs, variant calling

dense : 1. 0. 0. 0. 0. 0. 3.

sparse :

8
><

>:

size : 7

indices : 0 6

values : 1. 3.

We need methods that are linear in time and space

One idea: Exploit sparsity
• Explicit sparsity can provide orders of magnitude storage and 

computational gains



Big n and Big d

n

d

≈ ‘Low-rank’

d

n

r
r

We need methods that are linear in time and space 

One idea: Exploit sparsity 
• Explicit sparsity can provide orders of magnitude storage and 

computational gains 
• Latent sparsity assumption can be used to reduce dimension, 

e.g., PCA, low-rank approximation (unsupervised learning)



Big n and Big d

Another idea: Use different algorithms
• Gradient descent is an iterative algorithm 

that requires O(nd) computation and O(d) 
local storage per iteration

We need methods that are linear in time and space 

One idea: Exploit sparsity 
• Explicit sparsity can provide orders of magnitude storage and 

computational gains 
• Latent sparsity assumption can be used to reduce dimension, 

e.g., PCA, low-rank approximation (unsupervised learning)
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Example: n = 6; 3 workers
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